基于激光雷达的同时定位与室内地图构建算法研究
[Abstract]:With the improvement of industrial automation in China, more and more factories and warehousing workshops realize intelligent production and transportation without the need of manual participation. In this process, (Automated Guided Vehicle,AGV (automatic guidance vehicle) plays an important role as a new type of intelligent transportation device. In this paper, the algorithm of simultaneous localization and indoor map construction of indoor mobile robot based on lidar is studied. Firstly, the coordinate system of robot system is defined, the motion model based on odometer and the environment sensing model of lidar are built, and the reading method of laser radar data is studied according to the type of data transmitted by laser radar. The feasibility of using the raster map as the map model is compared and the research of the raster map status updating algorithm based on the probability model is completed. The effect of the algorithm is verified by MATLAB. In order to solve the problem of large position and orientation estimation error caused by particle degradation in SLAM location algorithm based on particle filter, this paper is based on Bayesian filtering theory and deduces the theory of particle filter localization algorithm. The reason of particle degradation in particle filter is analyzed. The resampling algorithm is studied, particle filter based on different resampling algorithm is designed, and the localization experiment in simulation environment is completed. According to the experimental results, the particle filter, which is more suitable for the layered resampling algorithm, is selected. On this basis, the concept of Rao-Blackwellized particle filter (RBPF) is introduced, and the conventional RBPF-SLAM algorithm is studied. Based on the conventional RBPF-SLAM algorithm framework, the theory of mixed proposal distribution is studied, and an improved RBPF-SLAM algorithm based on stratified resampling is proposed. The effectiveness of the improved algorithm is verified by writing a simulation program and using the open dataset to carry out simulation experiments. Using Turtlebot robot as the robot experimental platform and PC as the host computer, the original and improved SLAM algorithm are used for the real environment localization and map building experiment respectively. The experiment shows that the improved algorithm can get better localization and mapping effect. Finally, the embedded transplant of the algorithm is completed, and the location and construction of the AGV prototype under the given running trajectory are carried out, which verifies the effectiveness of the algorithm in practical application.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242;TN958.98
【参考文献】
相关期刊论文 前10条
1 张一栋;;用于自主移动机器人的导航定位技术分析[J];集成电路应用;2017年02期
2 李建勇;刘雪梅;李雪霞;杜博阳;;基于ROS的开源移动机器人系统设计[J];机电工程;2017年02期
3 常皓;杨巍;;基于全向移动模型的Gmapping算法[J];计量与测试技术;2016年10期
4 张毅;郑潇峰;罗元;庞冬雪;;基于高斯分布重采样的Rao-Blackwellized粒子滤波SLAM算法[J];控制与决策;2016年12期
5 罗元;苏琴;张毅;郑潇峰;;基于优化RBPF的同时定位与地图构建[J];华中科技大学学报(自然科学版);2016年05期
6 任福继;孙晓;;智能机器人的现状及发展[J];科技导报;2015年21期
7 张永泽;艾长胜;张尉;;惯导与视觉相结合的AGV小车控制系统设计[J];山东工业技术;2015年20期
8 罗元;傅有力;程铁凤;;基于改进Rao-Blackwellized粒子滤波器的同时定位与地图构建[J];控制理论与应用;2015年02期
9 王忠立;赵杰;蔡鹤皋;;大规模环境下基于图优化SLAM的图构建方法[J];哈尔滨工业大学学报;2015年01期
10 王法胜;鲁明羽;赵清杰;袁泽剑;;粒子滤波算法[J];计算机学报;2014年08期
相关博士学位论文 前1条
1 曲丽萍;移动机器人同步定位与地图构建关键技术的研究[D];哈尔滨工程大学;2013年
相关硕士学位论文 前6条
1 李昀泽;基于激光雷达的室内机器人SLAM研究[D];华南理工大学;2016年
2 朱福利;基于SLAM的移动机器人室内环境感知和地图构建研究[D];广东工业大学;2016年
3 梁潇;基于激光与单目视觉融合的机器人室内定位与制图研究[D];哈尔滨工业大学;2016年
4 邵长勉;动态环境下移动机器人定位及地图创建[D];南京邮电大学;2014年
5 武玫;基于分布式粒子滤波的SLAM算法研究[D];北京工业大学;2013年
6 刘轻尘;基于激光测距仪的救援机器人二维地图实时创建技术研究[D];哈尔滨工程大学;2013年
,本文编号:2212800
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2212800.html