噪声环境下基于稀疏表示的说话人识别系统的研究
[Abstract]:Speaker recognition, as a kind of voiceprint recognition technology, has an unlimited prospect in the rapid development of pattern recognition application today. Compared with other recognition methods using personal biological characteristics, it has the advantages of convenient operation and low equipment. Therefore, in recent years, the research on speaker recognition has attracted wide attention. The common model of speaker recognition is Gaussian background mixed model, which is trained according to the general background model. Compared with other models, this model has better robustness, but its computational complexity is large and recognition effect is not satisfactory. Many people have improved on this model. In recent years, sparse representation algorithm is used in signal processing. In addition, sparse representation can be introduced as a classification algorithm into the matching recognition module to improve the speaker recognition system and hope to solve the speaker recognition system through the characteristics of sparse representation. The main work of this paper includes: Firstly, the sparse representation algorithm is introduced into the speaker recognition model, and the matching recognition method of the model is improved by using the classification characteristics of sparse representation. Secondly, in order to satisfy the requirement of sparse representation algorithm, we design the composition of dictionary and use GMM mean hypervector as dictionary atom. Aiming at the problem of large dimension of hypervector, we propose to use Fisher discriminant ratio to compare the classification performance of each dimension of dictionary, and make rules to control dictionary. At the same time, the unit matrix I is added to the dictionary to improve the anti-noise performance of the system. The simulation results show that the sparse representation can be incorporated into the speech model to achieve better recognition efficiency. The I-Fisher algorithm proposed in this paper can not only reduce the dimension of the dictionary, but also improve the recognition and anti-noise performance of the system. T-type is very suitable for testing and training speech in the same environment, that is, the two voices are recorded in the same noise environment, in this condition the recognition effect is very good, but if you want to meet the requirements of various noise environments, you need to train more than one dictionary, the calculation is large. Next, for different noise environments, the recognition rate. According to the principle of MCA morphological component analysis, the speaker dictionary is trained with pure speech, and the sparse representation coefficients can be separated into pure speech coefficients and noise coefficients by adding noise dictionary. In order to get a dictionary that meets the design requirements, we use K-SVD dictionary learning method to train and stitch the two dictionaries separately, and integrate the noise dictionary as part of the speaker dictionary into the large dictionary. Sparse representation decomposition is used to extract and reconstruct the noise contained in the test speech to update the noise dictionary. Simulation results show that the proposed algorithm can effectively reduce the noise pairing between the test speech and the training speech under different ambient noises. In this paper, two recognition models based on sparse representation in noisy environments are proposed, the first dictionary is improved and optimized, and the suitable recognition environment is tested by experiments. The second dictionary design scheme based on noise dictionary is proposed, and the noise dictionary is updated. The method has achieved good recognition effect.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN912.3
【参考文献】
相关期刊论文 前10条
1 李懿;刘晓东;;一种新的模糊稀疏表示人脸识别算法[J];大连理工大学学报;2017年02期
2 袁安鼎;荆晓远;吴飞;;基于局部信息融合的正交稀疏保留投影分析[J];计算机技术与发展;2017年01期
3 钱阳;李雷;;基于新型鲁棒字典学习的视频帧稀疏表示[J];计算机技术与发展;2017年02期
4 周伟力;贺前华;王亚楼;庞文丰;;基于自适应逼近残差的稀疏表示语音降噪方法[J];电子与信息学报;2017年02期
5 游大涛;李捷;;基于稀疏谱的鲁棒说话人识别[J];河南大学学报(自然科学版);2016年05期
6 邓翔宇;刘增力;;基于改进的MCA和K-SVD的图像稀疏表示去噪算法[J];四川大学学报(自然科学版);2016年04期
7 王伟;韩纪庆;郑铁然;郑贵滨;陶耀;;基于Fisher判别字典学习的说话人识别[J];电子与信息学报;2016年02期
8 于云;周伟栋;;基于稀疏表示的鲁棒性说话人识别系统[J];计算机技术与发展;2015年12期
9 杨龙;陈建明;;语音增强算法及进展[J];电声技术;2015年07期
10 崔晓;;自训练过完备字典和稀疏表示的语音增强[J];现代电子技术;2015年13期
相关博士学位论文 前4条
1 谢怡宁;基于稀疏编码的鲁棒说话人识别方法研究[D];哈尔滨理工大学;2016年
2 鲍光照;基于稀疏表示和字典学习的语音增强算法研究[D];中国科学技术大学;2015年
3 游大涛;基于听觉机理的鲁棒特征提取及在说话人识别中的应用[D];哈尔滨工业大学;2013年
4 宋相法;基于稀疏表示和集成学习的若干分类问题研究[D];西安电子科技大学;2013年
相关硕士学位论文 前8条
1 吴婷婷;基于信号稀疏分解的复杂环境下说话人识别研究[D];南京理工大学;2015年
2 宋乐;说话人识别中改进特征提取算法的研究[D];太原理工大学;2014年
3 曾祺;文本无关的多说话人确认研究[D];电子科技大学;2014年
4 曹殿元;压缩感知理论及其算法[D];南京邮电大学;2013年
5 李胜涛;基于稀疏表示的人脸识别算法研究[D];湖南大学;2013年
6 汪桃林;基于稀疏表示的短语音说话人识别[D];电子科技大学;2013年
7 沈益青;基于改进的匹配追踪算法的信号稀疏分解[D];浙江大学;2013年
8 曹孝玉;说话人识别中的特征参数提取研究[D];湖南大学;2012年
,本文编号:2217045
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2217045.html