海气湍流信道中的光束偏振起伏
[Abstract]:As a new technology in the field of communication, wireless optical communication has the characteristics of portable equipment, good confidentiality and large amount of transmission information. Polarization of light has important application value in classical and quantum fields. Since the polarization state of light can store information, wireless optical communication can be realized by using this characteristic. However, the stability of wireless optical communication is affected by the interference of bad weather and turbulence when the beam propagates in the atmosphere. Therefore, the study of beam propagation in turbulent channels has not only theoretical significance, but also plays an important role in guiding the design of quantum communication systems in free space. The main work is as follows: in this paper, the polarization fluctuation of Gauss-Schell beam propagation in air-sea turbulent channel is discussed. By using the generalized Huygens-Fresnel integral and the Rytov approximation, the polarization model of beam propagation in air-sea turbulent channel is established, and the transverse coherent length of spherical wave is derived. In addition, based on the cross spectral density matrix, an average polarization model of Gaussian Schell electromagnetic beam is established. Finally, the polarization fluctuation characteristics of Gauss-Schell beam propagating in the turbulent channel between Kormogorov and non-Kolmogorov at sea and air are analyzed in detail by numerical simulation. The difference of polarization fluctuation between sea and land air channel is compared, and the following conclusions are obtained: 1. The degree of polarization increases with the increase of the number of photons and the coherent width of the light source when the Gaussian Schell beam propagates in the Kelmogorov turbulent channel. By comparing the polarization difference between the sea and the land atmosphere in Kolmogorov turbulent channel, it is found that the turbulent attenuation effect of the beam propagating in the sea and air turbulence channel is more obvious than that in the land air channel. That is to say, the depolarization effect in the air-sea turbulent channel is strong. 2. 2. When the Gaussian Schell beam propagates in a non-Kolmogorov turbulent channel at sea and air, it is found that the increase of the internal scale of turbulence can help us to obtain larger transverse coherent length and higher degree of polarization of spherical waves. The influence of the external scale of turbulence on the degree of polarization can be neglected. By introducing anisotropy factor analysis, it is concluded that the higher the degree of anisotropy of turbulence is, the stronger the degree of polarization is. Based on the cross spectral density matrix, an average degree of polarization model of Gauss-Schell electromagnetic beam propagation in land-air and sea-air turbulent channels is established. The average degree of polarization increases with the increase of the non-Kolmogorov spectral exponent, and the Gauss-Schell electromagnetic beam has a smaller 未 _ (yy), 未 _ (xx), _ Ax and a larger ASP _ y parameter. It can reduce the interference of light beam propagating in atmospheric turbulence. That is to say, high quality polarization communication can be achieved by selecting specific parameters.
【学位授予单位】:江南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN929.1
【相似文献】
相关期刊论文 前10条
1 蒲继雄;陈金铠;;各向异性高斯-斯克尔模型光束的传输特性[J];激光技术;1991年02期
2 晓晨;;采用导光装置的YAG激光焊接[J];激光与光电子学进展;1989年09期
3 黎昌金;邵毅全;;光束的几何排布对多重径向阵列光束传输特性的影响[J];激光杂志;2012年03期
4 黎昌金;罗亚梅;;非傍轴厄米-高斯光束多重径向阵列光束的传输特性[J];红外与激光工程;2013年S1期
5 雷大军;董辉;;一种新的三维有限差分光束传输法[J];半导体光电;2012年04期
6 何武光;吴健;杨春平;;环形光束大气传输数值模拟与分析[J];激光与红外;2011年02期
7 向宁静;吴振森;王明军;;部分相干高斯-谢尔光束在大气湍流中的展宽与漂移[J];红外与激光工程;2013年03期
8 吕百达;胡玉芳;季小玲;丁桂林;周兴灵;;光束变换光学及其应用[J];红外与激光技术;1991年03期
9 柳建;李树民;赵杰;王世庆;;镜面热变形及吹气流场对光束的联合影响[J];光学精密工程;2014年08期
10 高春清,魏光辉;像散光束的光束参数与光强二阶矩的关系[J];光学技术;2000年03期
相关会议论文 前5条
1 叶一东;李建民;颜宏;王锋;雒仲祥;;光束衍射传输的数值仿真方法[A];第十七届全国激光学术会议论文集[C];2005年
2 李阳月;蒲继雄;;涡旋光束通过角向分布狭缝的干涉特性[A];中国光学学会2010年光学大会论文集[C];2010年
3 冯博;甘雪涛;赵建林;;阶梯相位型涡旋光束传输特性研究[A];2010年西部光子学学术会议摘要集[C];2010年
4 钱勇;张宇;魏荣;王育竹;;单角锥准直空心光势阱的理论与实验研究[A];大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集[C];2004年
5 陆璇辉;陈和;赵承良;;涡旋光束和光学涡旋的研究[A];2007年先进激光技术发展与应用研讨会论文集[C];2007年
相关重要报纸文章 前1条
1 曲双平;神奇的光束传输技术[N];电脑报;2003年
相关博士学位论文 前10条
1 卢芳;阵列光束在湍流大气中的传输及目标散射回波特性[D];西安电子科技大学;2016年
2 高麒麟;多模光纤中基于受激布里渊散射的光束净化效应研究[D];哈尔滨工业大学;2016年
3 冯世鹏;激光在振动环境中的传输及指向控制研究[D];国防科学技术大学;2014年
4 徐腾;激光惯性约束核聚变中直接驱动方式光束排布优化研究[D];中国科学技术大学;2014年
5 董渊;双半高斯空心光束的形成、传输及控制技术研究[D];长春理工大学;2010年
6 董一鸣;部分相干柱偏振矢量光束的表征、传输及应用基础研究[D];苏州大学;2014年
7 段_";有限光束在平面微结构中的共振传输[D];中国科学院研究生院(西安光学精密机械研究所);2008年
8 姚e,
本文编号:2308594
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2308594.html