直流特高压超长站距光中继系统设计与实现
[Abstract]:UHV transmission technology is the need of the current national power grid development strategy. With the continuous upgrading of line voltage, the span between stations becomes larger and larger, and the optical signal will decay with the increase of transmission distance. This brings new difficulties to power system communication, so the study of reliable long distance optical transmission system is of great significance to power grid construction. In this paper, the key problems of ultra-long station distance optical transmission in power system are studied from three aspects: line loss, dispersion and limited optical signal-to-noise ratio. The 400km ultra-long station distance optical transmission is realized by optical relay and remote pump (non-optical relay). In particular, a "self-contained" independent power supply optical relay device installed in the tower is proposed to realize the super-long distance optical communication. The single-wave 10G optical transmission system was deployed and tested on the 卤800 kV UHV line from Hami to Zhengzhou (Shicheng-Huanxian section). The link loss, joint loss, dispersion loss and the receptivity of the equipment are calculated in detail, and the predetermined distance between the optical amplifier and the gain unit in the engineering is determined. During the implementation of the project, the position of the pole tower of the optical relay station and Raman remote gain unit is determined in accordance with the limit of optical loss according to the previous calculation, and the system is deployed and verified in the actual production environment. The transmission distance above 400km is realized in both systems. Finally, the two systems are tested and compared. The research results show that the optical communication transmission between substation and substation in UHV transmission line can be realized, which is of practical significance for future engineering construction and scheme design and popularization.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN929.1;TM73
【参考文献】
相关期刊论文 前9条
1 喻煌;李诗愈;刘志坚;余志强;莫琦;杨奇;贺志学;罗鸣;;400Gbit/s高速大容量光通信系统单模光纤设计与制备[J];光通信研究;2015年02期
2 雷学义;姜辉;陈国栋;熊煌;李树辰;孙军强;;电力系统超长站距光传输塔内中继器的最优化设计[J];光学与光电技术;2014年03期
3 郑波;;高速率WDM系统光信噪比(OSNR)计算方法及软件实现[J];邮电设计技术;2014年01期
4 张鹏飞;王华奎;;16×40Gbit/s DWDM系统色散补偿和调制方式研究[J];光通信研究;2013年01期
5 白歌乐;金翠;;高寒地区光通信中继站建设方案分析[J];内蒙古电力技术;2012年04期
6 孙海蓬;刘卫华;王子龙;;特高压超长距光传输的中继站应用研究[J];电力系统通信;2011年09期
7 李涛;单蓉;;基于放大器和遥泵的超长距通信网传输方案研究[J];广西民族师范学院学报;2010年05期
8 张帆;张巍;冯雪;彭江得;;低泵浦功率的遥泵放大在超长跨距密集波分复用系统中的应用[J];光子学报;2006年09期
9 原荣;全光通信技术讲座 第四讲 全光中继技术[J];广西通信技术;1997年03期
相关硕士学位论文 前3条
1 白歌乐;内蒙古电力通信网无中继超长距离光纤传输系统的研究与应用[D];内蒙古大学;2014年
2 徐健;超长跨距光传输系统中遥泵技术的研究与应用[D];武汉邮电科学研究院;2012年
3 张延童;电力线路塔上光中继站相关技术研究[D];山东大学;2012年
,本文编号:2318655
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2318655.html