基于多核DSP的运动目标跟踪算法的研究与实现
[Abstract]:With the development of society, video surveillance system has entered into thousands of households, intelligent monitoring system is the main trend of development, and in the monitoring system to achieve the tracking of moving targets is an important embodiment of intelligent. In this paper, intelligent video surveillance is taken as the research focus. Firstly, the realization platform of target tracking algorithm is designed, which is based on multi-core DSP video surveillance system, and then the moving target tracking algorithm is studied. Finally, the algorithm is implemented on the multi-core DSP monitoring platform. The research focus of this paper is as follows: (1) this paper designs a special video monitoring system based on TMS320DM8168 (DM8168) multi-core processor, which realizes the functions of video acquisition, processing, display and network output. The characteristic of the system is that the video stream frame is designed according to the actual demand, the video is transformed by TILER, OSD logo is added, mosaic and so on. In order to realize the network output function of the video, the streaming media server program is designed. In the design, the stability of the system is improved by adding AVS function, and the expansibility of the system is enhanced by designing PCIe driver. (2) in this paper, feature extraction algorithm is an important part of target tracking algorithm. In this paper, by comparing various feature extraction algorithms, we select the SURF algorithm, which takes both performance and efficiency into account, to extract the feature of the target, and use a combination of multiple matching algorithms to match the SURF feature of the target. The reasonable simulation flow is designed in the whole test of the target tracking algorithm. Some common problems, such as the change of the target shape, the occlusion of the target, the influence of the shadow of the target, and so on, are proposed. The simulation results are analyzed. (3) according to the characteristics of DM8168 multi-core monitoring platform, the realization flow of target tracking algorithm with multiple cores is designed, and the algorithm is implemented according to the flow chart. Because of the high requirement of real-time performance, the algorithm is optimized deeply according to the characteristics of DSP, and the speed of the algorithm is improved. The result is verified by testing the target tracking algorithm. (4) in order to better guarantee the performance and speed of the algorithm, the SURF algorithm, which takes the longest time in the target tracking algorithm, is implemented on the platform of TMS320C6678 (C6678). In the implementation, the whole task is partitioned by the way of dividing pictures, so that each kernel processes one sub-task. Through the analysis of the processing results, the correctness of the method is proved, and the speed of the algorithm is greatly improved. By exploring the implementation of SURF algorithm on C6678 platform, this paper lays a foundation for the realization of the following target tracking algorithm on the whole platform of DM8168 C6678.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;TN948.6
【参考文献】
相关期刊论文 前7条
1 黄凯奇;陈晓棠;康运锋;谭铁牛;;智能视频监控技术综述[J];计算机学报;2015年06期
2 仇大伟;刘静;;复杂场景下基于特征点匹配的目标跟踪算法[J];山东科学;2014年04期
3 倪郁东;王晨;;基于窗口的Surf目标跟踪[J];安徽大学学报(自然科学版);2014年04期
4 张坤;许廷发;王平;冯亮;;高精度实时全帧频SURF电子稳像方法[J];光学精密工程;2011年08期
5 陈书明;万江华;鲁建壮;刘仲;孙海燕;孙永节;刘衡竹;刘祥远;李振涛;徐毅;陈小文;;YHFT-QDSP:High-Performance Heterogeneous Multi-Core DSP[J];Journal of Computer Science & Technology;2010年02期
6 信师国;刘庆磊;刘全宾;;网络视频监控系统现状和发展趋势[J];信息技术与信息化;2010年01期
7 王亚琴;董彦荣;薄静仪;;流媒体传输协议及应用[J];办公自动化;2009年24期
相关博士学位论文 前6条
1 谢凌曦;基于局部特征的图像表示模型理论与实践[D];清华大学;2015年
2 侯跃恩;基于稀疏表示的视觉目标跟踪算法研究[D];华南理工大学;2014年
3 刘晴;基于区域特征的目标跟踪算法研究[D];北京理工大学;2014年
4 牛长锋;复杂背景下视频运动目标跟踪的研究[D];北京理工大学;2010年
5 郭龙源;计算机视觉立体匹配相关理论与算法研究[D];南京理工大学;2009年
6 夏永泉;计算机视觉中双目匹配相关技术研究[D];南京理工大学;2007年
相关硕士学位论文 前6条
1 王禹程;基于局部特征的运动目标跟踪算法的研究与实现[D];电子科技大学;2016年
2 王朋;基于DM8168的网络智能监控系统的研究与实现[D];电子科技大学;2015年
3 陈诚;基于双目视觉的运动目标跟踪算法研究与应用[D];哈尔滨工业大学;2014年
4 邹依峰;智能视频监控中的行人检测与跟踪方法研究[D];中国科学技术大学;2011年
5 卜珂;基于SURF的图像配准与拼接技术研究[D];大连理工大学;2009年
6 王典;基于混合高斯的背景建模与阴影抑制算法研究[D];西北工业大学;2006年
,本文编号:2401763
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2401763.html