电台个体识别研究
[Abstract]:The technology of individual identification of communication station is to obtain and detect the characteristic of individual "fingerprint" which represents the communication station by a certain method, so as to realize the recognition of individual. In this paper, the mechanism of fingerprint feature is studied based on the hardware characteristic of communication station. Combined with the development trend of feature extraction, selection and classification methods at home and abroad, the research content arrangement and the structure of the thesis are discussed. Based on the development sequence of signal analysis technology, this paper studies the theory of signal time-frequency analysis from Fourier analysis, wavelet analysis to Shearlet analysis, which lays a theoretical foundation for the research of individual identification technology in communication stations. Based on the classical fuzzy function analysis method, the wavelet analysis method with excellent time-frequency analysis performance and the new Shearlet analysis method, which can represent anisotropy, are used to improve it. The improved method is applied to individual recognition of radio station. Different from the classical fuzzy function method, the improved method uses cubic B-spline wavelet, db wavelet and Shearlet analysis to replace the original Fourier analysis in order to achieve better feature acquisition. The simulation results of MSK modulation and PSK modulation show that the effect of the improved method is less affected by the modulation method, and the effect of the ambiguity function method is greatly affected by the modulation method. Compared with the traditional fuzzy function method, db4 wavelet analysis, B-spline wavelet analysis and Shearlet analysis have better anti-noise performance under MSK modulation, and the cubic B-spline wavelet analysis method is more effective and stable. Finally, the dimension reduction and classification of signal features are studied. In order to avoid "dimensionality disaster", it is necessary to reduce the dimension of the feature to a certain extent and then use a good classifier to improve the classification effect. After studying the Fisher dimensionality reduction method, KNN classifier and SVM classifier, the influence of different classifiers on the final recognition rate is tested by experimental simulation.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN924
【参考文献】
相关期刊论文 前10条
1 唐哲;雷迎科;;通信辐射源个体识别中基于l_2正则化的最大相关熵算法[J];模式识别与人工智能;2016年06期
2 桂云川;杨俊安;吕季杰;王伟;;基于经验模态分解的通信辐射源分形特征提取算法[J];探测与控制学报;2016年01期
3 张泽君;程伟;杨瑞娟;余沁;;航空信道下基于双谱和信息维数的通信电台个体识别[J];空军预警学院学报;2016年01期
4 牛连强;赵子天;张胜男;;基于Gabor特征融合与LBP直方图的人脸表情特征提取方法[J];沈阳工业大学学报;2016年01期
5 陈启明;王郁;;基于维格纳与短时傅里叶变换的瞬态信号特征研究[J];中国科技信息;2014年24期
6 何永亮;陈西豪;许华;江汉;刘潇文;;利用信号围线积分双谱分形特征实现电台识别[J];电讯技术;2014年10期
7 梁华东;韩江洪;;基于维格纳分布特征的雷达信号分选[J];电子测量与仪器学报;2014年02期
8 陈志伟;徐志军;王金明;徐玉龙;孔磊;;一种基于循环谱切片的通信辐射源识别方法[J];数据采集与处理;2013年03期
9 顾晨辉;王伦文;;基于瞬时包络特征的跳频电台个体识别方法[J];信号处理;2012年09期
10 杨举;卢选民;周亚建;;基于多谱与支持向量机的通信辐射源个体识别[J];计算机仿真;2010年11期
相关博士学位论文 前3条
1 蒋良孝;朴素贝叶斯分类器及其改进算法研究[D];中国地质大学;2009年
2 任春辉;通信电台个体特征分析[D];电子科技大学;2006年
3 姜园;通信对抗中的现代信号处理技术应用研究[D];浙江大学;2004年
相关硕士学位论文 前3条
1 梁江海;基于经验模态分解的通信信号细微特征分析[D];国防科学技术大学;2013年
2 兰铂;FSK和PSK信号特征研究[D];北京邮电大学;2011年
3 王亮;基于时频原子的雷达辐射源信号特征分析[D];西南交通大学;2009年
,本文编号:2410832
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2410832.html