基于GNU Radio和USRP的能量检测频谱感知技术研究
[Abstract]:With the advent of 5G technology, the emergence of Internet of things technology, and many innovative radio-based services, the already crowded radio resources have become more tense. Therefore, it is essential not only to provide more spectrum, but also to make the existing spectrum more efficient. Cognitive radio technology can solve this problem effectively. In this paper, we mainly use software radio platform USRP, to study spectrum sensing technology based on energy detection. GNU Radio is an open source software system with rich signal processing modules. A series of radio development operations can be carried out by connecting PC with USRP, and the communication system model can be designed conveniently and quickly. The main work and innovations of this paper are as follows: firstly, the energy sensing spectrum sensing technology based on Python framework is implemented on the USRP platform. Taking full advantage of the function of GNU Radio, the requirement of the third party processing software is eliminated, and the computing overhead is greatly reduced. The flow of realizing spectrum sensing function by using the classical FFT module is introduced in this paper. Secondly, a two-stage spectrum sensing scheme based on USRP is proposed and implemented. They are coarse scan phase and fine scan phase respectively. In the coarse scanning phase, the spectrum occupation of 50MHz-2200MHz band can be detected in real time, and the spectrum cavity and target signal can be found. The fine-scan phase can be accurately scanned in the specified frequency band to detect the central frequency and bandwidth of the signal as well as the spectrum map of the observed signal. The detection accuracy can be improved by fine scanning in the idle frequency band, which is found by coarse scanning process. At the end of the fine-scan phase, the USRP, as a cognitive user, can select the appropriate frequency band to send packets for spectrum access. By comparing the correct reception rate of the data packet, the error rate of the communication process can be greatly reduced by selecting a reasonable frequency band through the spectrum sensing process. Thirdly, the experiment of USRP image transmission with host user interference is designed. The effect of selecting frequency band based on different spectrum sensing methods is compared, and the correct recovery rate of image file is calculated. The spectrum sensing scheme based on coarse scan and fine scan not only has high sensing precision, but also saves sensing time, so this scheme has the best detection effect.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN925
【参考文献】
相关期刊论文 前6条
1 陈婷;张博;牛德智;任晓岳;吴昊谦;;能量检测中的BPSK信号最优检测门限[J];空军工程大学学报(自然科学版);2016年04期
2 王志文;徐以涛;江汉;罗屹洁;赵勇;;基于USRP平台的宽带频谱感知系统设计与实现[J];通信技术;2015年06期
3 杜文峰;刘亚涛;明仲;隋银雪;;基于干扰消减的认知无线电频谱分配算法[J];通信学报;2012年05期
4 王磊;郑宝玉;崔景伍;;基于随机矩阵理论的频谱感知技术研究综述[J];信号处理;2011年12期
5 刘鑫;谭学治;徐贵森;;噪声不确定下认知无线电能量检测性能的分析[J];四川大学学报(工程科学版);2011年06期
6 张铁军,胡正名;软件无线电研究的新进展和关键技术问题[J];电信科学;1998年09期
相关博士学位论文 前4条
1 刘玉涛;认知无线电中基于博弈相关理论的频谱分配算法研究[D];哈尔滨工业大学;2010年
2 陈东;认知无线电中无线频谱感知技术的研究[D];西安电子科技大学;2009年
3 王文忠;认知无线电联合频谱感知技术的研究[D];北京邮电大学;2008年
4 张健;软件无线电的基本理论构架[D];电子科技大学;2000年
相关硕士学位论文 前8条
1 刘鹤;基于RBF神经网络的认知频谱感知算法研究[D];兰州交通大学;2013年
2 王白云;OFDM系统的研究和基于GNU Radio软件无线电平台的实现[D];西安电子科技大学;2013年
3 武婧;基于FPGA的认知无线电频谱检测的研究[D];大连海事大学;2011年
4 孙培培;认知无线电网络的累加干扰分析[D];南京邮电大学;2011年
5 刘勇;遥测技术中QAM调制解调器的FPGA实现[D];哈尔滨工程大学;2011年
6 黄凌;基于GNU Radio和USRP的认知无线电平台研究[D];华南理工大学;2010年
7 邓凡;认知无线电网络中宽带频谱压缩感知算法研究[D];湖南大学;2010年
8 车越岭;认知无线电网络中的功率控制算法研究[D];电子科技大学;2009年
,本文编号:2436861
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2436861.html