当前位置:主页 > 科技论文 > 信息工程论文 >

基于局部拓扑结构的无线传感器网络定位算法研究

发布时间:2019-03-08 14:29
【摘要】:无线传感器网络涉及无线通信、传感器技术、分布式信息处理、嵌入式技术以及微电子等众多技术,在交通、军事、医疗、环保等领域有着广泛的应用。在无线传感器网络众多用途中,确定事件发生的位置是监测到事件发生后需要解决的关键问题之一。位置信息除了确定事件发生的地点外,还具有网络管理、移动目标跟踪、辅助路由等功能。因此设计高效的WSN定位算法是无线传感器网络管理中不可或缺的一部分。本文针对无线传感器网络的定位算法展开了研究。主要的研究工作有:(1)对WSN的定位算法进行了深入的研究,分别从机器学习、测距和非测距三个方面分析总结了WSN定位技术的优势和不足,为设计出高精度、低能耗的WSN定位算法提供了有力的基础。(2)在对基于LE-LPCCA定位算法研究的基础上,引入局部拓扑结构和分布式特性,提出了一种基于局部保持的分布式定位算法LE-DLPCCA。通过仿真实验验证,当训练样本比例为70%,定位精度可达86%,且能耗大幅降低,可延长整个无线传感器网络的生命周期,建模速度同时也提高了8倍。(3)分析了无线传感器网络的拓扑基本符合流形的特点,引入局部拓扑结构和非信标节点的信息,采用半监督学习技术研究节点的定位问题,提出了一种基于拉普拉斯映射的移动节点定位算法LP-LapRLS。该算法不仅提高了映射模型的泛化能力,而且在典型的的流形学习算法中建模效率较高。实验结果表明与同类算法相比LP-LapRLS具有更高的建模效率和定位精度,当训练集比例为60%,定位精度可达84%。(4)在研究了无线传感器网络的体系结构和协议栈的基础上,在VS2010集成环境中采用VC++,设计并实现了WSN定位仿真平台。在该平台中实现了LE-DLPCCA算法和LP-LapRLS算法,最后对这两种基于机器学习的定位算法的定位效果进行了对比与分析。LE-DLPCCA算法相比LP-LapRLS算法定位精度更高,大约提升了2个百分点。但是LP-LapRLS算法在出现离群值的情况下,鲁棒性较好,并且在定位算法中建模效率最高。
[Abstract]:Wireless sensor network (WSN) involves many technologies such as wireless communication sensor technology distributed information processing embedded technology and microelectronics and so on. It is widely used in the fields of transportation military medical protection and so on. In many applications of wireless sensor networks, determining the location of events is one of the key issues to be solved after monitoring the occurrence of events. Location information not only determines the location of the event, but also has the functions of network management, moving target tracking, auxiliary routing and so on. Therefore, the design of efficient WSN positioning algorithm is an indispensable part of wireless sensor network management. In this paper, the localization algorithm of wireless sensor networks is studied. The main research work is as follows: (1) the localization algorithm of WSN is studied in depth, and the advantages and disadvantages of WSN positioning technology are analyzed and summarized from three aspects: machine learning, ranging and non-ranging, so as to design high precision. Low energy consumption WSN localization algorithm provides a powerful foundation. (2) based on the research of LE-LPCCA-based localization algorithm, the local topology and distributed characteristics are introduced, and a distributed localization algorithm LE-DLPCCA. based on local preservation is proposed. The simulation results show that when the proportion of training samples is 70%, the positioning accuracy can reach 86%, and the energy consumption can be greatly reduced, thus prolonging the whole life cycle of wireless sensor networks. At the same time, the modeling speed is improved by 8 times. (3) the topology of wireless sensor networks is analyzed, the local topology and the information of non-beacon nodes are introduced, and the semi-supervised learning technology is used to study the localization problem of wireless sensor networks. A mobile node location algorithm LP-LapRLS. based on Laplacian mapping is proposed in this paper. This algorithm not only improves the generalization ability of the mapping model, but also has high modeling efficiency in the typical manifold learning algorithm. Experimental results show that LP-LapRLS has higher modeling efficiency and positioning accuracy than similar algorithms, when the ratio of training sets is 60%. The positioning accuracy can reach 84%. (4) on the basis of studying the architecture and protocol stack of wireless sensor network, the WSN positioning simulation platform is designed and implemented by using VC in VS2010 integrated environment. In this platform, the LE-DLPCCA algorithm and the LP-LapRLS algorithm are implemented. Finally, the localization effect of the two localization algorithms based on machine learning is compared and analyzed. The LE-DLPCCA algorithm is more accurate than the LP-LapRLS algorithm, and the location accuracy of the two algorithms is higher than that of the LP-LapRLS algorithm. It has increased by about 2 percentage points. However, in the case of outliers, the LP-LapRLS algorithm is robust, and the modeling efficiency is the highest in the localization algorithm.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212.9;TN929.5

【参考文献】

相关期刊论文 前10条

1 朱素文;曾宪华;胡梦;;改进的局部保持典型相关分析的无线传感器网络节点定位方法[J];传感技术学报;2016年10期

2 田萌;王文剑;;高斯核函数选择的广义核极化准则[J];计算机研究与发展;2015年08期

3 吴凡;彭力;董国勇;;WSN中基于中位线分割的APIT定位算法[J];小型微型计算机系统;2015年07期

4 林海;;一种基于核方法的无线传感器网络定位算法[J];科技创新导报;2014年26期

5 张迎胜;单志龙;;线性回归在无线传感器网络定位中的应用研究[J];小型微型计算机系统;2014年07期

6 温家旺;王敬东;施乔明;王佳伟;;基于RSSI线性回归分析的无线传感器网络定位方法[J];指挥控制与仿真;2014年03期

7 汪麒;庄毅;顾晶晶;;周界入侵检测中基于WSN的目标定位算法[J];计算机工程;2013年09期

8 张露;范伟;韩双霞;杨明霞;;WSN中基于MDS-MAP的分布式定位算法设计与实现[J];计算机与数字工程;2013年06期

9 张苍松;郭军;崔娇;尚军;;基于RSSI的室内定位算法优化技术[J];计算机工程与应用;2015年03期

10 张锐恒;庄毅;赵振宇;王洲;顾晶晶;;基于MCB的传感网移动目标定位算法[J];计算机科学;2012年08期

相关博士学位论文 前3条

1 侯慧娟;基于电磁波天线阵列的变电站局部放电信号处理及定位方法[D];上海交通大学;2014年

2 张兴福;基于流形学习的局部降维算法研究[D];哈尔滨工程大学;2012年

3 王成群;基于学习算法的无线传感器网络定位问题研究[D];浙江大学;2009年

相关硕士学位论文 前10条

1 王静;多标签数据的降维与分类算法研究[D];大连理工大学;2014年

2 张真;一种非测距的分布式动态多跳定位算法[D];西安电子科技大学;2014年

3 李江雯;无线传感器网络非测距定位算法研究[D];重庆大学;2013年

4 叶润;ZigBee节点设计与能量均衡分簇调度算法的研究[D];电子科技大学;2013年

5 韩梦飞;基于K-means聚类和数据一致性的WSN多边定位算法[D];吉林大学;2012年

6 曾群芳;基于拓扑结构保持的线性降维方法研究及其应用[D];华南理工大学;2012年

7 修志鑫;基于数据融合的无线传感器网络监控系统的设计与实现[D];上海交通大学;2012年

8 李成岭;基于RSSI的无线自组织网络室内定位算法研究与实现[D];上海交通大学;2012年

9 郑燕;无线传感器网络同心锚信标定位算法的研究[D];华中师范大学;2011年

10 孙文文;海上钻井平台模拟试验台的设计与制造[D];中国石油大学;2011年



本文编号:2436902

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2436902.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e98be***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com