煤系地层接收弹性波信号的盲源分离方法研究
[Abstract]:This subject comes from the project of National Natural Science Foundation of China "the fine detection theory of coal bed reflection trough wave based on continuous source". In the project of National Natural Science Foundation of China, it is necessary to separate the source signals from the observed signals when the mixed model and the source signals of the elastic wave signals received by the coal measures stratum cannot be accurately obtained. The purpose of this paper is to study and design a blind source separation algorithm which is suitable for receiving elastic wave signals in coal measure strata. (1) the development of blind source separation at home and abroad is described in detail and the different applications of different algorithms are classified. The basic knowledge and separation requirements of blind source separation are expounded, and the noise environment of coal measure strata and the transmission characteristics of elastic waves are determined. The design requirements of blind source separation algorithm for receiving elastic wave signals in coal measure strata are defined. (2) the nonlinear function and orthogonalization formula of FastICA algorithm based on negative entropy are selected. The mixed elastic wave signal received by coal measure stratum is processed separately with natural gradient algorithm, and the mixed signal separation is successfully realized by Matlab simulation experiment. It is proved that the non-Gaussian criterion, likelihood criterion and mutual information criterion are essentially identical to each other, so that the FastICA algorithm based on negative entropy is proved. Both the natural gradient algorithm and the FastICA algorithm based on mutual information can realize the blind source separation of receiving elastic wave signals in coal measure strata. Two inherent problems of the separation sequence and the uncertainty of the amplitude of the separated signals are verified. (3) A new non-orthogonal decomposition algorithm is proposed. The traditional independent component analysis (ICA) algorithm needs to satisfy the premise that the number of observed signals is no less than that of the source signals, and the independent components must be non-Gao Si distribution and so on. It greatly reduces the practicability of independent component analysis in blind source separation of elastic wave signals in actual coal measure strata. The proposed new non-orthogonal decomposition algorithm does not need to satisfy the above prerequisites. The correlation analysis is used to select the elementary function from a single observed signal, and then, These function functions are used as the basis of non-orthogonal signal decomposition algorithm to separate different source signals from one mixed signal one by one. Simulation experiments are carried out on a single typical observation signal composed of square wave, sine wave, attenuation wave modulation signal and random noise. The experiments show that the algorithm can extract all the source signals accurately from a single observation signal. Compared with the independent component analysis (ICA), which is generally accepted at present, it has better performance such as separation sequence determination, separation signal energy symbol determination and so on.
【学位授予单位】:山东科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN911.7
【参考文献】
相关期刊论文 前10条
1 刘婷;张锦;李灯熬;;改进的自然梯度盲源分离算法在非平稳环境中的应用[J];电子器件;2016年03期
2 于刚;周以齐;;单通道盲源分离算法及其在工程机械振源分析中的应用[J];机械工程学报;2016年10期
3 孙成禹;邵婕;蓝阳;唐杰;;基于独立分量分析基的地震随机噪声压制[J];石油物探;2016年02期
4 周竹生;罗勇涛;;地震信号时频分析中的希尔伯特黄变换研究[J];物探化探计算技术;2016年01期
5 颜中辉;王峗;李攀峰;秦轲;;基于希尔伯特-黄变换的多分量地震去噪方法研究及应用[J];地球物理学进展;2015年06期
6 杨杰明;齐厚颖;;改进的互信息最小化非线性盲源分离算法[J];电测与仪表;2015年09期
7 张瑞;郭银景;蔺香运;;一种新的随机信号的非正交分解方法[J];数据采集与处理;2013年06期
8 陈琛;马庆伦;李灯熬;赵菊敏;;NGA实现互信息量最小化的盲源分离[J];计算机工程与应用;2013年04期
9 李宗;冯志鹏;褚福磊;;基于改进的串音误差的盲分离评价指标[J];振动与冲击;2012年18期
10 徐先峰;冯大政;;一种快速的解盲源分离新算法[J];电子学报;2010年12期
相关硕士学位论文 前9条
1 周飞飞;基于过完备字典表示的稀疏分解算法研究[D];南京邮电大学;2016年
2 张文霞;欠定盲源分离混合矩阵估计及源信号恢复方法研究[D];燕山大学;2016年
3 王立凯;希尔伯特-黄变换在雷达测井中的应用研究[D];电子科技大学;2016年
4 李玉霞;欠定盲源分离混合矩阵估计方法研究[D];燕山大学;2015年
5 赵倩云;基于欠定盲源分离的管道泄漏信号提取方法研究[D];燕山大学;2015年
6 邵莲莲;基于自然梯度的fast-ICA算法研究[D];西安电子科技大学;2014年
7 王维强;独立分量分析在地震勘探中的应用研究[D];中国石油大学(华东);2012年
8 李建锋;基于盲源分离的地震信号处理方法研究及应用[D];中国石油大学(华东);2012年
9 邓添予;基于固定点算法的地震信号随机噪声盲分离方法应用研究[D];成都理工大学;2010年
,本文编号:2462683
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2462683.html