Backbone Coloring for Triangle-free Planar Graphs
发布时间:2022-01-02 06:42
Let G be a graph and H a subgraph of G. A backbone-k-coloring of(G, H) is a mapping f :V(G) → {1, 2, ···, k} such that |f(u)-f(v)| ≥ 2 if uv ∈ E(H) and |f(u)-f(v)| ≥ 1 if uv ∈ E(G)\E(H).The backbone chromatic number of(G, H) denoted by χb(G, H) is the smallest integer k such that(G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) < 3, then there exists a spanning tree T of G such that χb(G, T) ≤ ...
【文章来源】:Acta Mathematicae Applicatae Sinica. 2017,33(03)SCICSCD
【文章页数】:6 页
【文章目录】:
1 Introduction
2 Triangle-free Planar Graphs
3 Graphs with mad (G) <3
本文编号:3563681
【文章来源】:Acta Mathematicae Applicatae Sinica. 2017,33(03)SCICSCD
【文章页数】:6 页
【文章目录】:
1 Introduction
2 Triangle-free Planar Graphs
3 Graphs with mad (G) <3
本文编号:3563681
本文链接:https://www.wllwen.com/kejilunwen/yysx/3563681.html