当前位置:主页 > 科技论文 > 自动化论文 >

基于GA-BP神经网络的镁合金微弧氧化膜层厚度预测

发布时间:2018-01-25 00:18

  本文关键词: 镁合金 微弧氧化 反向传播神经网络 遗传算法 膜层厚度 出处:《兵器材料科学与工程》2017年01期  论文类型:期刊论文


【摘要】:为直观地检验膜层的质量,建立微弧氧化工艺参数(电流大小、脉冲宽度、氧化时间)与微弧氧化膜层厚度之间的反向传播(BP)神经网络预测模型,其结构为3-10-1(即3个输入神经元,10个隐含层节点,1个输出神经元)。采用遗传算法(GA)优化BP神经网络的初始权值和阈值,构建基于遗传算法神经网络的膜厚预测模型。用GA-BP神经网络对膜厚进行模型仿真,并将仿真结果与BP神经网络模型仿真结果进行对比。结果表明,GA-BP网络模型预测值的平均误差为1.65%,最大误差为9.75%,而BP模型预测结果的平均误差为8.62%,最大误差为13.68%。GA-BP神经网络模型预测精度要优于BP神经网络模型。
[Abstract]:In order to test the quality of the film directly, the neural network prediction model of the back propagation between the parameters of micro-arc oxidation (current, pulse width, oxidation time) and the thickness of the micro-arc oxide film was established. Its structure is 3-10-1 (that is, 3 input neurons, 10 hidden layer nodes and 1 output neuron). Genetic algorithm (GA) is used to optimize the initial weight and threshold of BP neural network. The prediction model of membrane thickness based on genetic algorithm neural network is constructed. The GA-BP neural network is used to simulate the membrane thickness, and the simulation results are compared with the simulation results of BP neural network model. The average error of the prediction value of GA-BP network model is 1.65, the maximum error is 9.75, and the average error of BP model is 8.62%. The maximum error is 13.68. The prediction accuracy of GA-BP neural network model is better than that of BP neural network model.
【作者单位】: 江苏科技大学机械工程学院;
【分类号】:TG174.4;TP183
【正文快照】: 微弧氧化是通过在电解质溶液中发生阳极微等离子体击穿(火花放电或微弧),可在镁合金表面获得陶瓷膜层,该膜层具有良好的耐磨、耐蚀性能且与基体结合良好,从而极大改善镁合金的表面性能[1]。其中,微弧氧化膜的厚度对镁合金的表面性能有重要影响,故需通过所需膜厚选择合适的工艺

【相似文献】

相关期刊论文 前10条

1 雷明,李作清,陈志祥,吴雅,杨叔子;神经网络在预报控制中的应用[J];机床;1993年11期

2 杨自厚;神经网络技术及其在钢铁工业中的应用第8讲人工神经网络在钢铁工业中的应用(下)[J];冶金自动化;1997年05期

3 李润生,李延辉,胡学军,刘壮,王守俭;神经网络在冶金中的应用[J];钢铁研究;1998年02期

4 刘海玲,刘树深,尹情胜,夏之宁,易忠胜;线性神经网络及在多组分分析中的初步应用[J];计算机与应用化学;2000年Z1期

5 王继宗,王西娟;用神经网络确定梁上裂纹位置的研究[J];煤炭学报;2000年S1期

6 赵学庆,袁景淇,周又玲,贺松;生物发酵过程神经网络状态预报器的验证[J];无锡轻工大学学报;2000年06期

7 李智,姚驻斌,张望兴,贺超武;基于神经网络的混匀配料优化方法[J];钢铁研究;2000年04期

8 胡敏艺,马荣骏;神经网络在冶金工业中的应用[J];湖南有色金属;2000年05期

9 倪建军,邵琳;利用神经网络进行观测数据的分析与处理[J];连云港化工高等专科学校学报;2000年04期

10 裴浩东,苏宏业,褚健;材料工程中基于神经网络的稳态优化策略[J];材料科学与工程;2001年02期

相关会议论文 前10条

1 徐春玉;;基于泛集的神经网络的混沌性[A];1996中国控制与决策学术年会论文集[C];1996年

2 周树德;王岩;孙增圻;孙富春;;量子神经网络[A];2003年中国智能自动化会议论文集(上册)[C];2003年

3 罗山;张琳;范文新;;基于神经网络和简单规划的识别融合算法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年

4 郭爱克;马尽文;丁康;;序言(二)[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

5 钟义信;;知识论:神经网络的新机遇——纪念中国神经网络10周年[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

6 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

7 金龙;朱诗武;赵成志;陈宁;;数值预报产品的神经网络释用预报应用[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

8 田金亭;;神经网络在中学生创造力评估中的应用[A];第十二届全国心理学学术大会论文摘要集[C];2009年

9 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年

10 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年

相关重要报纸文章 前10条

1 美国明尼苏达大学社会学博士 密西西比州立大学国家战略规划与分析研究中心资深助理研究员 陈心想;维护好创新的“神经网络硬件”[N];中国教师报;2014年

2 卢业忠;脑控电脑 惊世骇俗[N];计算机世界;2001年

3 葛一鸣 路边文;人工神经网络将大显身手[N];中国纺织报;2003年

4 中国科技大学计算机系 邢方亮;神经网络挑战人类大脑[N];计算机世界;2003年

5 记者 孙刚;“神经网络”:打开复杂工艺“黑箱”[N];解放日报;2007年

6 本报记者 刘霞;美用DNA制造出首个人造神经网络[N];科技日报;2011年

7 健康时报特约记者  张献怀;干细胞移植:修复受损的神经网络[N];健康时报;2006年

8 刘力;我半导体神经网络技术及应用研究达国际先进水平[N];中国电子报;2001年

9 ;神经网络和模糊逻辑[N];世界金属导报;2002年

10 邹丽梅 陈耀群;江苏科大神经网络应用研究通过鉴定[N];中国船舶报;2006年

相关博士学位论文 前10条

1 杨旭华;神经网络及其在控制中的应用研究[D];浙江大学;2004年

2 李素芳;基于神经网络的无线通信算法研究[D];山东大学;2015年

3 石艳超;忆阻神经网络的混沌性及几类时滞神经网络的同步研究[D];电子科技大学;2014年

4 王新迎;基于随机映射神经网络的多元时间序列预测方法研究[D];大连理工大学;2015年

5 付爱民;极速学习机的训练残差、稳定性及泛化能力研究[D];中国农业大学;2015年

6 李辉;基于粒计算的神经网络及集成方法研究[D];中国矿业大学;2015年

7 王卫苹;复杂网络几类同步控制策略研究及稳定性分析[D];北京邮电大学;2015年

8 张海军;基于云计算的神经网络并行实现及其学习方法研究[D];华南理工大学;2015年

9 李艳晴;风速时间序列预测算法研究[D];北京科技大学;2016年

10 陈辉;多维超精密定位系统建模与控制关键技术研究[D];东南大学;2015年

相关硕士学位论文 前10条

1 章颖;混合不确定性模块化神经网络与高校效益预测的研究[D];华南理工大学;2015年

2 贾文静;基于改进型神经网络的风力发电系统预测及控制研究[D];燕山大学;2015年

3 李慧芳;基于忆阻器的涡卷混沌系统及其电路仿真[D];西南大学;2015年

4 陈彦至;神经网络降维算法研究与应用[D];华南理工大学;2015年

5 董哲康;基于忆阻器的组合电路及神经网络研究[D];西南大学;2015年

6 武创举;基于神经网络的遥感图像分类研究[D];昆明理工大学;2015年

7 李志杰;基于神经网络的上证指数预测研究[D];华南理工大学;2015年

8 陈少吉;基于神经网络血压预测研究与系统实现[D];华南理工大学;2015年

9 张韬;几类时滞神经网络稳定性分析[D];渤海大学;2015年

10 邵雪莹;几类时滞不确定神经网络的稳定性分析[D];渤海大学;2015年



本文编号:1461443

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1461443.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0333b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com