AFS型吊箱式缆道自动化测流系统的研究与应用
本文选题:水文缆道 切入点:吊箱 出处:《太原理工大学》2016年硕士论文
【摘要】:利用缆道测流装备进行河流流量的测量是最广泛而有效的一种测流技术,目前我国水文站采用的缆道设备自动化程度不高,包括测深、测速在内的许多关键测流环节仍需人工参与,测流信号的采集与传输手段也较为落后,测流效率十分低下。针对以上问题,本文结合吊箱缆道与悬杆测流法的特点,对缆道测流过程中的关键技术进行了研究,研制开发了AFS型吊箱式缆道自动化测流系统。全新设计的吊箱式测验平台能完成所有测流步骤的自动化衔接,控制室与测验平台之间通过无线数传模块进行通讯,实现了测验平台上的无人化操作。测控系统由总控单元、起点距测控单元和测验平台测控单元三部分组成,采用IPC-PLC二级主从控制结构,主站与从站之间采用Modbus协议进行信息交换。控制室内的总控IPC为主站设备,配以测流软件实现整个系统的统一调度与人机交互;起点距PLC和测验平台PLC既可以作为从站接收主站指令,也可作为独立的控制单元,对缆道运行设备和测流过程进行现场控制,使系统具备了远程和现场双重操作模式。通过电压比较器LM339对流速仪信号进行处理,甄别出水面信号与流速信号;设计的转臂式失重开关通过检测悬吊索拉力可识别出水底信号;流速仪信号经硬件消抖、光耦隔离、软件消抖后通过无线单片机CC1110发送至测验平台PLC。水面信号和水底信号的准确判断以及流速信号的准确采集与传输,使悬杆测深和转子流速仪测速能够自动完成。系统的软件和硬件在结构上实现了模块化,不仅采用了标准的串行通讯接口,通过对IPC与两台PLC之间通讯协议的定义,还为子模块间提供了软件编程接口,系统配置灵活且通用性极强。整套缆道自动化测流系统的应用改变了水文站原有的测流作业方式,不仅节省人力,提高了测流作业的安全性,更使测流效率得到极大改善,在各个水文站有着十分广阔的应用前景。
[Abstract]:It is the most widely and effective technique to measure the river flow by using the cableway flow measuring equipment. At present, the cableway equipment used in the hydrological station in our country is not high in automation, including sounding.Many key flow measurement links, including velocity measurement, still need manual participation, and the collection and transmission of current measurement signals are also relatively backward, and the efficiency of current measurement is very low.In view of the above problems, this paper studies the key technology in the process of cable flow measurement by combining the characteristics of hoisting cableway and suspension rod flow measurement method, and develops the automatic flow measurement system of AFS type hoisting cableway.The newly designed hanging box test platform can complete the automatic connection of all the flow measurement steps, and the communication between the control room and the test platform is carried out through wireless data transmission module, which realizes the unmanned operation on the test platform.The measurement and control system consists of three parts: the master control unit, the starting distance measurement and control unit and the measurement and control unit of the test platform. The IPC-PLC two-stage master-slave control structure is adopted, and the information exchange between the master station and the slave station is carried out by Modbus protocol.The central control IPC main station equipment in the control room is equipped with the flow measurement software to realize the unified dispatching and man-machine interaction of the whole system, the starting point distance PLC and the test platform PLC can be used as the slave station to receive the instruction of the master station as well as as the independent control unit.Field control of cable-running equipment and flow measurement process makes the system have the dual operation mode of remote and on-site.The signal of the current meter is processed by the voltage comparator LM339, and the surface signal and the velocity signal are identified. The designed rotary arm weightlessness switch can identify the underwater signal by detecting the suspension pull force, the signal of the current meter is removed by hardware, and the light coupling is isolated.The software is sent to the test platform by CC1110.The accurate judgement of water surface signal and underwater signal and the accurate collection and transmission of velocity signal can make the sounding of hanging rod and the velocity of rotor velocity meter to be completed automatically.The software and hardware of the system are modularized in structure. Not only the standard serial communication interface is adopted, but also the software programming interface is provided for the sub-modules by defining the communication protocol between IPC and two PLC.The system is flexible and versatile.The application of the whole cable-automatic flow measurement system has changed the original operation mode of hydrologic station, which not only saves manpower, improves the safety of the flow measurement operation, but also greatly improves the efficiency of flow measurement.It has a very broad application prospect in various hydrological stations.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:P332.4;TP274
【相似文献】
相关期刊论文 前4条
1 曾何华;赵秀峰;吕晓华;牟锟;;AFS测定锌精矿中汞含量的不确定度评定[J];广东化工;2011年09期
2 吕绪华,潘开灵;求解AFS问题的两种启发式算法在最坏情况下性能比上界的可达性研究[J];武汉冶金科技大学学报(自然科学版);1999年03期
3 孙立;刘全吉;;(HG—AFS)法同时测定饮用水中的微量砷和汞[J];黑龙江科技信息;2002年06期
4 ;[J];;年期
相关会议论文 前3条
1 刘俊峰;曾君;郑家伟;;AFS系统中智能多传感器数据融合研究与应用[A];第二十九届中国控制会议论文集[C];2010年
2 刘晓东;;基于AFS代数和AFS结构的模糊理论[A];面向21世纪的科技进步与社会经济发展(上册)[C];1999年
3 陈建林;吴青;初秀民;王维锋;;汽车AFS系统车灯转角动态模型研究[A];2008第四届中国智能交通年会论文集[C];2008年
相关重要报纸文章 前2条
1 倪颖邋实习生 王文君;AFS全国项目负责人及志愿者培训会举行[N];鞍山日报 ;2008年
2 张国俊 徐建栋 林以勤;“AFS让我们记住了常州”[N];常州日报;2006年
相关硕士学位论文 前7条
1 杨红星;AFS型吊箱式缆道自动化测流系统的研究与应用[D];太原理工大学;2016年
2 胡广飞;基于AFS模糊逻辑的模糊关联分类研究[D];大连海事大学;2009年
3 张强;基于AFS模糊逻辑的模糊认知图[D];大连海事大学;2005年
4 朱小蕾;基于AFS模糊逻辑和属性选择的分类问题研究[D];大连海事大学;2009年
5 任艳;基于AFS模糊逻辑的聚类分析方法研究[D];大连海事大学;2007年
6 王显昌;基于AFS模糊逻辑的分类分析方法研究[D];大连海事大学;2007年
7 陈建林;基于驾驶模拟器的汽车AFS系统控制策略研究[D];武汉理工大学;2009年
,本文编号:1724100
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1724100.html