当前位置:主页 > 科技论文 > 自动化论文 >

基于信息融合技术的油浸式变压器故障诊断方法研究

发布时间:2018-04-17 13:53

  本文选题:油浸式变压器 + 故障诊断 ; 参考:《华北电力大学(北京)》2017年硕士论文


【摘要】:电力传输与人们的生产、生活息息相关,油浸式变压器是输配电系统中关键的枢纽设备,为了不对生产、生活产生影响,及时而准确地检测出油浸式变压器早期潜伏性故障,保证变压器正常、稳定运行,显的尤为重要。本文针对如何提高油浸式变压器故障诊断正确率的问题展开研究,对已有方法进行深入研究,并对其进行改进;在此基础上提出了一种极限学习机与D-S证据理论相结合的故障诊断方法。论文首先针对极限学习机缺乏概率输出的问题,引入了多分类概率极限学习机的方法,此方法先将多分类问题分解为多个二分类问题,再使用Sigmoid函数将二分类极限学习机输出映射为概率输出,然后通过求解一个二次规划问题,使多个二分极限学习机的概率输出融合为多分类概率输出,将多分类概率极限学机应用于变压器故障诊断,为变压器故障诊断提供了概率参考;文中还对D-S证据理论存在冲突证据时,会存在融合结果与实际结果不符的问题,对其进行改进,为此本文引进证据体相似度的概念,计算出证据集的加权平均值,确定证据集主元后,对证据集进行修正,使证据融合在有冲突的情况下,也有较强的处理能力。其次,本文将多分类概率极限学习机与改进的D-S证据理论相结合,建立基于信息融合技术的故障诊断模型,将整个诊断过程分为初步诊断层和融合诊断层。本文将油浸式变压器DGA气体的原始数据构造为气体含量、气体比值、三比值三个特征向量作为初步诊断层的输入,得到三个概率输出,然后使用改进的D-S证据理论进行融合诊断,得到最终的诊断结果。最后,本文在以上研究内容的基础之上,设计并实现了基于信息融合技术的油浸式变压器故障诊断系统。
[Abstract]:Power transmission is closely related to people's production and life. Oil-immersed transformer is the key hub equipment in transmission and distribution system. In order not to affect production and life, early latent faults of oil-immersed transformer can be detected in time and accurately.It is very important to ensure the normal and stable operation of the transformer.In this paper, how to improve the correct rate of fault diagnosis of oil-immersed transformer is studied, and the existing methods are deeply studied and improved.On the basis of this, a fault diagnosis method combining extreme learning machine and D-S evidence theory is proposed.Firstly, aiming at the problem of the lack of probability output, this paper introduces the method of multi-classification probabilistic learning machine, which decomposes the multi-classification problem into multiple two-classification problems.Then the output of binary extreme learning machine is mapped to probabilistic output by using Sigmoid function. Then, by solving a quadratic programming problem, the probabilistic output of multiple binary extreme learning machines is fused into multi-class probabilistic output.The application of multi-class probabilistic limit machine to transformer fault diagnosis provides a probabilistic reference for transformer fault diagnosis, and when there is conflict evidence in D-S evidence theory, there will be a problem that the fusion result does not agree with the actual result.This paper introduces the concept of evidence body similarity, calculates the weighted average of evidence set, determines the principal component of evidence set, modifies the evidence set, and makes evidence fusion in the case of conflict.Also has the strong processing ability.Secondly, a fault diagnosis model based on information fusion technology is established by combining multi-classification probabilistic extreme learning machine with improved D-S evidence theory. The whole diagnosis process is divided into primary diagnosis layer and fusion diagnosis layer.In this paper, the original data of DGA gas of oil-immersed transformer are constructed as gas content, gas ratio and three characteristic vectors as the input of the preliminary diagnostic layer, and three probabilistic outputs are obtained.Then the improved D-S evidence theory is used for fusion diagnosis and the final diagnosis results are obtained.Finally, on the basis of the above research, this paper designs and implements an oil-immersed transformer fault diagnosis system based on information fusion technology.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP202;TM407;TP277

【参考文献】

相关期刊论文 前9条

1 白翠粉;高文胜;金雷;于文轩;朱文俊;;基于3层贝叶斯网络的变压器综合故障诊断[J];高电压技术;2013年02期

2 姜万录;吴胜强;;基于SVM和证据理论的多数据融合故障诊断方法[J];仪器仪表学报;2010年08期

3 杨静;田亮;赵爱军;刘吉臻;;基于典型样本的证据理论信度函数分配构造方法[J];华北电力大学学报(自然科学版);2008年05期

4 林志贵;袁臣虎;冯志红;;基于D-S理论的多源信息融合冲突问题处理方法[J];计算机工程与应用;2006年35期

5 杨露菁;郝威;;多传感器目标识别的神经网络与证据理论结合方法[J];探测与控制学报;2006年01期

6 梁永春,李彦明;改进型组合RBF神经网络的变压器故障诊断[J];高电压技术;2005年09期

7 吴立增,朱永利,苑津莎;基于贝叶斯网络分类器的变压器综合故障诊断方法[J];电工技术学报;2005年04期

8 李俭川,胡茑庆,秦国军,温熙森;贝叶斯网络理论及其在设备故障诊断中的应用[J];中国机械工程;2003年10期

9 尚勇,闫春江,严璋,曹俊岭;基于信息融合的大型油浸电力变压器故障诊断[J];中国电机工程学报;2002年07期

相关硕士学位论文 前2条

1 管海军;基于DGA的电力变压器状态监测分析系统[D];吉林大学;2007年

2 彭席汉;变压器DGA智能在线监测仪的研究与开发[D];浙江大学;2006年



本文编号:1763871

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1763871.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7dc0e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com