当前位置:主页 > 科技论文 > 自动化论文 >

基于机器学习的遥感图像分类研究

发布时间:2018-04-24 03:08

  本文选题:遥感影像 + 混合核函数 ; 参考:《江西理工大学》2017年硕士论文


【摘要】:随着航空航天科技和传感器科技的快速更新换代,遥感影像的数据来源变得多样化,数据集也日趋复杂,地物复杂难辨,如何准确、高效地进行遥感图像分类成为了近年来研究的重要内容。由于人工智能科技发展迅速,机器学习分类方法也逐渐成为一种有效的遥感图像分类处理方法,为了有效提高影像的分类精度,本文在机器学习的理论上构建了一种高效简单的分类模型以及一种两级分类模型。论文的主要工作与创新点如下:(1)系统地介绍了遥感技术发展的研究现状,简要阐述监督分类与非监督分类常用的一些方法以及现今前沿的分类器;扼要地总结了本文的研究内容、及其组织结构流程。(2)针对遥感影像在获取过程中易受大气吸收与散射、传感器定标、地形等因素的影响而造成图像失真的特点,本文利用二次多项式模型进行遥感影像几何校正,采取双线性内插法进行重采样等技术对影像进行校正预处理,并进行了大气校正,有效地去除了传感器等因素的畸变影响,同时也排除了大气中散射颗粒的影响,为后续分类奠定基础。(3)神经网络模型具有容错性、学习能力强等特点,但要得到较好的分类效果耗时非常大,而极限学习机分类器是一种结构简单的神经网络方法,能快速高效的对样本进行识别。本文构建了一种混合核极限学习机遥感图像分类模型,该模型利用混合核函数的全局与局部特性,结合遥感图像的邻域信息,有效地提高了分类精度。(4)基于遥感影像的光谱和空间信息提出了一种两级分类器的方法。结合光谱信息与空间结构信息,首先采用光谱角匹配方法作为前级分类器,提取影像中光谱信息特征明显且区别较大的地物;然后利用遥感数据的张量空间结构信息,选取支持张量机作为后级分类器。对选取的感兴趣区域进行分类,不仅提高了分类精度,而且分类视觉效果也有了明显改善。
[Abstract]:With the rapid upgrading of aerospace and sensor technologies, the data sources of remote sensing images become more and more diverse, the data sets become more and more complex, the complexity of ground objects is difficult to distinguish, how to be accurate, Efficient classification of remote sensing images has become an important research content in recent years. Due to the rapid development of artificial intelligence technology, machine learning classification method has gradually become an effective remote sensing image classification processing method, in order to effectively improve the image classification accuracy, In this paper, an efficient and simple classification model and a two-level classification model are constructed in theory of machine learning. The main work and innovation of this paper are as follows: (1) the research status of remote sensing technology is introduced systematically, and some common methods of supervised classification and unsupervised classification are briefly described, as well as the current frontier classifiers. This paper briefly summarizes the research contents of this paper, and its organization and structure. 2) aiming at the characteristics of image distortion caused by the influence of atmospheric absorption and scattering, sensor calibration, topography and so on, in the process of remote sensing image acquisition. In this paper, the quadratic polynomial model is used for the geometric correction of remote sensing image, the bilinear interpolation method is used to resample the image and the atmospheric correction is carried out, which effectively removes the distortion effect of the sensor and other factors. At the same time, the influence of scattering particles in the atmosphere is excluded, which lays the foundation for the following classification. The neural network model has the characteristics of fault tolerance and strong learning ability, but it takes a lot of time to obtain better classification effect. The extreme learning machine classifier is a simple neural network method, which can identify samples quickly and efficiently. In this paper, a hybrid kernel extreme learning machine remote sensing image classification model is constructed. The model combines the global and local characteristics of the hybrid kernel function and the neighborhood information of the remote sensing image. A two-level classifier based on spectral and spatial information of remote sensing image is proposed. Combining the spectral information with the spatial structure information, the spectral angle matching method is first used as the front classifier to extract the features of the spectral information in the image, and then the spatial structure information of Zhang Liang from the remote sensing data is used. Zhang Liang machine is selected as the posterior classifier. The classification of selected regions of interest not only improves the classification accuracy, but also improves the visual effect of classification.
【学位授予单位】:江西理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP751;TP181

【参考文献】

相关期刊论文 前10条

1 曹兆伟;林宁;徐文斌;卢文虎;张孝龙;;基于BP神经网络的东屿岛遥感影像分类[J];海洋通报;2016年05期

2 曹林林;李海涛;韩颜顺;余凡;顾海燕;;卷积神经网络在高分遥感影像分类中的应用[J];测绘科学;2016年09期

3 周宇谷;王平;高颖慧;;基于视觉词袋模型的遥感图像分类方法[J];重庆理工大学学报(自然科学);2015年05期

4 刘万军;杨秀红;曲海成;孟煜;;基于光谱信息散度与光谱角匹配的高光谱解混算法[J];计算机应用;2015年03期

5 张乐飞;;遥感影像的张量表达与流形学习方法研究[J];测绘学报;2013年05期

6 陈善静;胡以华;石亮;王磊;孙杜娟;徐世龙;;空-谱二维蚁群组合优化SVM的高光谱图像分类[J];光谱学与光谱分析;2013年08期

7 阎继宁;周可法;王金林;王珊珊;汪玮;李东;;基于SAM与SVM的高光谱遥感蚀变信息提取[J];计算机工程与应用;2013年19期

8 周蓉;杨晓伟;吴广潮;;在线支持张量机[J];计算机科学与探索;2013年07期

9 万曙静;张承明;刘俊华;;基于自适应最小距离调整的多光谱遥感图像分类方法[J];测绘通报;2012年S1期

10 张乐飞;黄昕;张良培;;高分辨率遥感影像的支持张量机分类方法[J];武汉大学学报(信息科学版);2012年03期

相关博士学位论文 前3条

1 何同弟;高光谱图像的分类技术研究[D];重庆大学;2014年

2 杨国鹏;基于机器学习方法的高光谱影像分类研究[D];解放军信息工程大学;2010年

3 王煜;基于决策树和K最近邻算法的文本分类研究[D];天津大学;2006年

相关硕士学位论文 前2条

1 唐雪飞;基于案例推理的高光谱图像分类研究[D];哈尔滨工业大学;2010年

2 吴静;基于支持向量机与图斑的高光谱分类方法研究[D];长安大学;2010年



本文编号:1794853

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1794853.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户759e9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com