充气式螺旋纯扭转软体机器人模块的研究
发布时间:2018-04-27 13:45
本文选题:软体机器人 + 纯扭转 ; 参考:《哈尔滨工业大学》2017年硕士论文
【摘要】:软体机器人采用柔性材料制作,形态结构简单,高功率重量比,能够通过主被动变形适应复杂的环境,抵御较强冲击,操作对象友好,在一定程度上弥补了刚性机器人的不足,在医疗、工业机械手、康复、仿生、探测等领域具有广阔的应用前景,逐渐成为机器人研究的热门方向。目前软体机器人研究仍处于起步阶段,在材料选择、结构设计与制造、运动学和动力学建模、驱动控制等方面仍有诸多难题亟待解决,开展相关研究具有重要意义。当前,软体弯曲致动器得到了广泛的研究和关注,而作为机器人复杂运动重要组成扭转运动研究甚少。在受限的空间内,扭转机器人能够通过扭转运动快速灵活的实现特定位姿,增加操作的灵活性。本文提出一种新型充气式螺旋纯扭转模块,并针对其模块的设计、制备、运动学建模、驱动控制以及样机实验展开了研究。首先,基于模块化思想和螺旋式纯扭转驱动原理,设计了一种螺旋式软体致动器模块,易于控制,能够提供大角度的纯扭转运动;利用应变能量密度函数描述超弹性材料的应力应变关系,并基于Abaqus有限元分析技术,分析了软体模块的几何参数对扭转性能的影响规律,在此基础上完成了软体扭转模块的制备。其次,针对柔性材料的非线性导致软体扭转模块运动学建模困难的问题,基于虚功原理和弹性应变能相结合的方法,并利用类似Rivlin方法,通过柱坐标系变换,计算出弹性应变能,建立了驱动气压和扭转角度之间的运动学映射关系;并结合数值仿真与实验进行修正,得到了较高精度的软体纯扭转模块运动学模型。再次,采用模块化设计思想设计了可调速的步进电机充/放气驱动机构,搭建软体模块控制系统;基于气压反馈,采用PID控制方法,实现了气压、充气速度和流量的连续调节。基于VoxCAD软件和QT+VS开发了人机交互和驱动控制系统,可用于软体机器人的运动控制和轨迹规划。通过Ethernet通信和CAN级联方式实现了多路驱动控制的易扩展性。最后,搭建了多路软体机器人驱动控制平台,进行软体扭转模块的样机实验研究。设计并搭建了软体扭转模块测量平台,测量了软体扭转模块扭角、扭矩、滞回特性以及弯曲刚度等静态特性;建立了扭转模块和仿人手轨迹规划实验系统,实现了软体模块的轨迹规划与控制,验证了轨迹规划与运动控制方法的有效性;最后,通过扭转、弯曲以及伸缩多种软体变形模块的组装,搭建了具有不同变形功能的软体机器人实验系统,完成了异型孔装配、胃部模拟移物、仿人手扭转抓取实验,验证了模块的大角度、纯扭转变形能力,以及控制系统与轨迹规划控制方法的有效性。
[Abstract]:The soft robot is made of flexible material with simple configuration and high power weight ratio. It can adapt to complex environment through active and passive deformation, resist strong impact, and operate with friendly object, which makes up for the shortage of rigid robot to some extent. It has a broad application prospect in the fields of medical treatment, industrial manipulator, rehabilitation, bionics, detection and so on, and has gradually become a hot research direction of robot. At present, the research of software robot is still in its infancy. There are still many problems to be solved in material selection, structure design and manufacture, kinematics and dynamics modeling, drive control and so on. At present, flexible bending actuators have been widely studied and paid attention to, but as an important component of complex motion of robots, torsional motion is seldom studied. In the limited space, the torsion robot can quickly and flexibly realize the specific position and pose by torsion motion, and increase the flexibility of operation. In this paper, a new inflatable spiral pure torsion module is proposed, and the design, preparation, kinematics modeling, driving control and prototype experiment of the module are studied. Firstly, based on the modularization idea and the principle of helical pure torsion drive, a kind of spiral soft actuator module is designed, which is easy to control and can provide large angle pure torsional motion. The strain energy density function is used to describe the stress-strain relationship of hyperelastic materials. Based on the Abaqus finite element analysis technology, the influence of the geometric parameters of the software module on the torsion performance is analyzed. On this basis, the software torsion module is completed. Secondly, aiming at the problem that the nonlinear of flexible material leads to the difficulty of kinematics modeling of software torsion module, based on the combination of virtual work principle and elastic strain energy, and using the similar Rivlin method, the transformation of cylindrical coordinate system is used. The kinematics mapping relationship between the driving pressure and the torsion angle is established, and the kinematics model of the software pure torsion module with high accuracy is obtained by combining the numerical simulation with the experimental results. Thirdly, the modular design idea is used to design the speed adjustable charging / discharging drive mechanism of stepping motor, and the software module control system is built. Based on the feedback of air pressure, the PID control method is used to realize the continuous adjustment of air pressure, inflation speed and flow rate. Based on VoxCAD software and QT vs, a human-computer interaction and drive control system is developed, which can be used in motion control and trajectory planning of software robot. The extensibility of multiplex driver control is realized by Ethernet communication and CAN cascade. Finally, a multi-channel software robot drive and control platform is built, and the prototype of the software torsion module is studied experimentally. The software torsion module measuring platform is designed and built, the torsional angle, torque, hysteresis characteristic and bending stiffness of the software torsion module are measured, and the torsion module and simulated manual trajectory planning experiment system are established. The trajectory planning and control of the software module is realized, and the validity of the trajectory planning and motion control method is verified. Finally, through the assembly of the twisting, bending and stretching software deformation modules, A software robot experiment system with different deformation functions was built. The assembly of irregular holes, the simulated movement of stomach and the grasping experiment of manual torsion were completed. The large angle and pure torsional deformation ability of the module were verified. And the effectiveness of control system and trajectory planning control method.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前3条
1 曹玉君;尚建忠;梁科山;范大鹏;马东玺;唐力;;软体机器人研究现状综述[J];机械工程学报;2012年03期
2 付宜利;李显凌;梁兆光;;基于形状记忆合金的自主导管导向机器人设计[J];机械工程学报;2008年09期
3 刘伟庭,方向生,陈裕泉;仿生“蚯蚓”机器人的SMA执行器实现[J];传感技术学报;2005年03期
相关硕士学位论文 前2条
1 董红兵;一种充气式软体全向弯曲模块关键技术研究[D];哈尔滨工业大学;2016年
2 邓韬;面向心脏微创手术的软体机器人系统研究[D];上海交通大学;2014年
,本文编号:1810973
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1810973.html