环锭纺纱机钢丝圈的在线检测与故障诊断
本文选题:环锭纺纱机钢丝圈 + 数据采集 ; 参考:《杭州电子科技大学》2017年硕士论文
【摘要】:环锭纺纱机是我国应用最广、效果最好的纺纱设备之一,钢丝圈作为其最重要的部件之一,长期处于高速摩擦圆周运行状态,极易出现局部热量过高,造成严重磨损,从而导致运行不平衡、有碰磨、有裂纹等故障。当钢丝圈出现故障时,不仅会影响纺纱产品的质量,而且会造成极大的生产资料浪费,阻碍纺纱机的持续运行,不利于高效率生产,甚至影响纺纱设备的寿命。实际生产中不同的纺纱机匹配不同钢种类丝圈,这使得其运行规律迥异,且钢丝圈运行速度快、数据量大、信息复杂等因素的影响,对钢丝圈的数据采集和故障诊断造成了极大的难度。因此,纺纱行业急需一套可靠、高效、全面、通用的环锭纺纱机钢丝圈在线数据检测和故障诊断系统,为纺纱企业提供科学的生产指导。针对以上的生产需求,本文研究的主要内容如下:1)针对钢丝圈种类繁多、运动过程复杂、运行速度迅速、数量庞大等因素的限制,很难全面、准确迅速的获取所有钢丝圈的实时数据。本文通过现场调研分析和理论研究,设计了基于CAN总线底层通信,且具有可靠性、时效性、灵敏性、通用性的三层分布式数据采集管控系统。经过纺纱企业应用表明,该套系统具有极大的企业应用价值。2)针对当前落后且过于简单的钢丝圈故障诊断方式,无法保证诊断正确率和时效性的问题。在结合钢丝圈运行特点的基础上对故障诊断算法进行了深入研究,引入了基于支持向量机的智能故障诊断算法,并提出了联合时域频域特征提取法进行样本特征提取,同时采用网格搜索和交叉验证法进行参数选择。通过对支持向量机故障诊断模型的构建、分析与测试,结果表明该诊断耗时短,正确率达到88.0%,基本解决了中小纺纱企业钢丝圈故障诊断问题。3)针对纺纱企业的生产需求,在研究的数据采集和故障诊断模型子系统的基础上,从软件角度,结合C/S与B/S技术模式实现采集和故障诊断子系统的集成与对接,并开发了一套功能齐全的友好型软件管控系统。通过在绍兴纺纱企业中的初步调试结果表明,该套系统基本实现了环锭纺纱机钢丝圈的在线检测与故障诊断功能。
[Abstract]:The ring spinning machine is one of the most widely used and effective spinning equipment in China. As one of its most important components, the steel wire ring is in the running state of high speed friction circle for a long time. As a result, the operation is unbalanced, there are rubbing, cracks and other faults. When the wire ring fails, it will not only affect the quality of spinning products, but also cause a great waste of production materials, hinder the continuous operation of spinning machines, is not conducive to high efficiency production, and even affect the life of spinning equipment. In actual production, different spinning machines match different kinds of steel wire rings, which make their running rules very different, and the influence of such factors as fast running speed, large amount of data, complex information and so on. It is very difficult to collect data and diagnose fault of steel coil. Therefore, the spinning industry is in urgent need of a reliable, efficient, comprehensive and universal on-line data detection and fault diagnosis system for steel rings of ring spinning machines, which provides scientific production guidance for spinning enterprises. In view of the above production demand, the main contents of this paper are as follows: 1) it is very difficult to be comprehensive because of the restrictions of various types of steel coils, complex motion process, fast running speed, huge quantity, etc. Accurate and rapid access to all wire ring real-time data. Based on the field investigation and theoretical research, this paper designs a three-layer distributed data acquisition and control system based on CAN bus, which has reliability, timeliness, sensitivity and versatility. The application of spinning enterprise shows that the system has great application value. 2) aiming at the current backward and too simple fault diagnosis method of steel coil, it can not guarantee the correct rate and timeliness of diagnosis. Based on the characteristics of steel coil operation, the fault diagnosis algorithm is deeply studied, and the intelligent fault diagnosis algorithm based on support vector machine is introduced, and a joint time-domain and frequency-domain feature extraction method is proposed for sample feature extraction. At the same time, the method of grid search and cross validation is used to select parameters. Through the construction, analysis and test of the support vector machine fault diagnosis model, the results show that the diagnosis time is short and the correct rate is 88.0, which basically solves the steel ring fault diagnosis problem of small and medium-sized spinning enterprises. On the basis of the data acquisition and fault diagnosis model subsystem, the integration and docking of the acquisition and fault diagnosis subsystem is realized by combining C / S and B / S technology mode from the point of view of software. And has developed a set of complete function friendly software management and control system. The preliminary debugging results in Shaoxing spinning enterprise show that the system can basically realize the on-line detection and fault diagnosis of the steel ring of ring spinning machine.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS103.822;TP277
【参考文献】
相关期刊论文 前10条
1 焦卫东;林树森;;整体改进的基于支持向量机的故障诊断方法[J];仪器仪表学报;2015年08期
2 董晓卫;章水龙;章友鹤;赵连英;郭权龙;;环锭纺纱企业减少用工与提升产品档次途径的探析[J];现代纺织技术;2015年03期
3 王春娥;肖琴;;普瑞美公司Ultimo细纱单锭检测系统的应用[J];棉纺织技术;2015年03期
4 宋晓亮;杨艺;张慧灵;刘基宏;;光电式断纱检测头性能试验研究[J];棉纺织技术;2015年03期
5 王文军;;未来新型纺纱技术的核心是智能化[J];纺织机械;2015年01期
6 于学洋;惠晶;傅锡林;;基于模糊PID的钢丝圈基片冷连轧机张力控制系统设计[J];纺织器材;2015年04期
7 苏丁仓;;普瑞美单锭在线监控Ultimo系统[J];纺织器材;2014年01期
8 阎磊;宋如勤;郝爱萍;;新型纺纱方法与环锭纺纱新技术[J];棉纺织技术;2014年01期
9 卢洪波;王金龙;;基于LIBSVM和智能算法的电站锅炉排烟温度优化[J];黑龙江电力;2013年04期
10 李红卫;杨东升;孙一兰;韩娟;;智能故障诊断技术研究综述与展望[J];计算机工程与设计;2013年02期
相关博士学位论文 前1条
1 唐静远;模拟电路故障诊断的特征提取及支持向量机集成方法研究[D];电子科技大学;2010年
相关硕士学位论文 前6条
1 邹戬;中国纺织产业国际竞争力研究[D];东华大学;2014年
2 朱春雷;支持向量机中核函数和参数选择研究及其应用[D];南京林业大学;2011年
3 沈童;基于CAN总线的数据采集处理系统的设计[D];大连理工大学;2010年
4 陈欢欢;基于支持向量机的故障诊断方法研究[D];哈尔滨工业大学;2008年
5 谢芳芳;基于支持向量机的故障诊断方法[D];湖南大学;2006年
6 王岩;中国纺织工业发展战略研究[D];吉林大学;2004年
,本文编号:1903959
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1903959.html