Delta机器人轨迹跟踪控制仿真研究
发布时间:2018-05-27 03:17
本文选题:并联机器人 + 轨迹跟踪 ; 参考:《兰州理工大学》2017年硕士论文
【摘要】:随着机器人技术的不断发展,机器人已经在各行各业被广泛使用,其中并联机器人因具有操作空间大、承载能力强、运动精度高、运动学逆解简单、操作速度快等一系列优点,受到众多研究者的青睐。近几年来,在化妆品、药品和电子等领域的包装生产线上,存在着大批量重复性的工作,如拆卸、分拣、搬运等,目前这类工作大部分由人工来完成,这势必会降低工作效率和产品精度。因此急需开发一种少自由度机械手来代替人工完成上述工作,以提高工作效率和产品精度。Delta机器人是一种典型的空间三自由度平动并联机构,与串联机器人相比,它的整体结构比较简单、末端执行器运动速度高等优点,已成功解决了上述问题并得到广泛应用。目前国内外对Delta机器人在轨迹规划、控制策略等方面的研究还不够成熟,导致在运行过程中存在运动精度不高、运动稳定性较低等问题。本文以工业中应用最为广泛的三自由度Delta机器人为研究对象,首先对国内外Delta机器人的研究现状进行了概括总结。其次以Delta机器人的工作原理和结构特点为依据,分析了机构的自由度数、结构设计参数和结构联接形式,运用Pro/E软件建立Delta机器人的三维实体模型,并验证了模型的合理性。再者利用Pro/E软件和ADAMS软件之间的接口,将所建立的Delta机器人的三维实体模型导入到ADAMS中,通过添加质量和约束建立虚拟机器人模型,在关节空间中对Delta机构的期望轨迹进行合理的轨迹规划,基于ADAMS软件进行运动学和动力学仿真分析。仿真结果表明:末端执行器的速度和加速度以及主动臂的角速度和角加速度随时间变化均匀且连续,拐角处过渡平滑;Delta机器人运行过程较为平稳,具有良好的运动性能。最后为了改善机构的轨迹跟踪精度,以Delta机器人末端执行器的运动轨迹为控制目标,采用MATLAB软件分别建立PID控制系统和模糊PID控制系统,基于ADAMS和MATLAB进行联合仿真。仿真结果表明:模糊PID控制相对于PID控制不仅响应速度较快,而且控制精度较高,达到了较为满意的仿真效果,该结果可为Delta机器人轨迹跟踪控制研究提供可靠的理论化指导。
[Abstract]:With the continuous development of robot technology, robot has been widely used in various industries. Among them, parallel robot has a series of advantages, such as large operation space, strong bearing capacity, high motion precision, simple kinematics inverse solution, fast operation speed, and so on. It is favored by many researchers. In recent years, in the packaging production lines in the fields of cosmetics, pharmaceuticals and electronics, there is a lot of repetitive work, such as disassembly, sorting, handling, etc. At present, most of this kind of work is done by manual work. This will inevitably reduce work efficiency and product accuracy. Therefore, it is urgent to develop a small degree of freedom manipulator instead of manual to complete the above work, so as to improve the working efficiency and product precision. Delta robot is a typical parallel mechanism with three degrees of freedom in space, compared with the serial robot. It has the advantages of simple structure and high speed of the end effector, which has been successfully solved and widely used. At present, the research on trajectory planning and control strategy of Delta robot is not mature enough, which leads to some problems such as low motion precision and low motion stability. In this paper, the three-degree-of-freedom (Delta) robot, which is widely used in industry, is taken as the research object. Firstly, the research status of Delta robot at home and abroad is summarized. Secondly, based on the working principle and structural characteristics of Delta robot, the degree of freedom of mechanism, structural design parameters and structural connection form are analyzed. The 3D solid model of Delta robot is established by using Pro/E software, and the rationality of the model is verified. Thirdly, using the interface between Pro/E software and ADAMS software, the 3D entity model of Delta robot is imported into ADAMS, and the virtual robot model is established by adding quality and constraints. The desired trajectory of the Delta mechanism is reasonably planned in the joint space, and the kinematics and dynamics simulation is carried out based on the ADAMS software. The simulation results show that the velocity and acceleration of the end actuator and the angular velocity and acceleration of the active arm vary uniformly and continuously with time. Finally, in order to improve the tracking accuracy of the mechanism, the trajectory of the end actuator of the Delta robot is taken as the control object. The PID control system and the fuzzy PID control system are established by using the MATLAB software, and the joint simulation is carried out based on ADAMS and MATLAB. The simulation results show that the fuzzy PID control is not only faster than PID control, but also has higher control precision, and achieves a satisfactory simulation effect. The results can provide reliable theoretical guidance for the research of Delta robot trajectory tracking control.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【相似文献】
相关期刊论文 前10条
1 宗光华;毕树生;王巍;李大寨;;机器人技术开拓未来——2005年国际机器人展(日本)巡礼[J];机器人技术与应用;2006年01期
2 陈林;奚如如;王兴松;;套索驱动细长机器人的初步设计与试验[J];机电工程;2011年03期
3 谢芝馨;;苏联机器人技术述评[J];机械与电子;1989年04期
4 罗飞,,余达太;主动式控制──机器人抑振控制的有效方式[J];机器人;1995年04期
5 卢桂章;当前高技术发展的前沿——机器人技术[J];天津科技;1995年01期
6 苏陆;日本机器人技术与产品[J];全球科技经济w
本文编号:1940187
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1940187.html