当前位置:主页 > 科技论文 > 自动化论文 >

基于引力搜索机制的花朵授粉算法

发布时间:2018-05-28 00:06

  本文选题:花朵授粉算法 + 寻优性能 ; 参考:《自动化学报》2017年04期


【摘要】:针对花朵授粉算法(Flower pollination algorithm,FPA)易陷入局部极值、后期收敛速度慢的不足,提出一种基于引力搜索机制的花朵授粉算法.该算法在基本花朵授粉算法的全局寻优部分,采用花朵个体间的万有引力和算法本身的莱维飞行共同实现个体位置的更新,使花朵受莱维飞行和个体间引力的双重影响,个体在通过优化信息的共享向质量大(最优位置)的个体靠近,且个体间的万有引力牵制莱维飞行的随机游走.同时又利用莱维飞行的跳跃及不均匀性步长避免个体陷入局部极值,从而提高算法的寻优能力.通过对高维单峰函数、高维多峰函数、低维函数及多峰复杂函数的优化实验结果表明,改进算法的寻优性能显著优于基本的花朵授粉算法,其收敛速度、收敛精度、鲁棒性均较对比算法有较大提升.最后,利用改进算法对弹簧张力设计问题、压力管设计问题2个工程实例进行测试,获得了较好的结果.仿真实验结果佐证了改进算法的有效性和可行性.
[Abstract]:A flower pollination algorithm based on gravity search mechanism is proposed to solve the problem that flower pollination algorithm (Flower pollination algorithm) is prone to fall into local extremum and slow convergence rate. In the global optimization part of the basic flower pollination algorithm, the universal gravitation between flower individuals and the Levi flight of the algorithm itself are used to update the individual position together, and the flowers are affected by the double influence of Levy flight and individual gravity. Individuals are moving closer to those with high mass (optimal position) through the sharing of optimized information, and the gravitational pull between individuals restrains the random walk of Levy's flight. At the same time, the jump and non-uniformity step size of Levi flight is used to avoid individual falling into local extremum, so as to improve the optimization ability of the algorithm. The experimental results of high-dimensional single-peak function, high-dimensional multi-peak function, low-dimensional function and multi-peak complex function show that the performance of the improved algorithm is significantly better than that of the basic flower pollination algorithm, and the convergence rate and accuracy of the improved algorithm are better than that of the basic flower pollination algorithm. The robustness is much better than the contrast algorithm. Finally, two engineering examples of spring tension design and pressure pipe design are tested by using the improved algorithm, and good results are obtained. Simulation results demonstrate the effectiveness and feasibility of the improved algorithm.
【作者单位】: 江西财经大学信息管理学院;河池学院计算机与信息工程学院;
【基金】:国家自然科学基金(61562032) 河池学院计算机应用技术重点学科(2016-91)资助~~
【分类号】:TP18

【相似文献】

相关期刊论文 前10条

1 邹汪平;;一种基于网络安全控制的蜂群算法应用研究[J];吉林师范大学学报(自然科学版);2013年04期

2 李向伟;曹博;;时间参数在HITS算法中的应用及改进[J];兰州工业高等专科学校学报;2006年02期

3 吴涛;彭笃学;;一种改进的直线段裁剪算法[J];湛江师范学院学报;2008年03期

4 张瑞子;南琳;胡琨元;田景贺;;基于EPC Class-1 Gen-2标准的防冲突算法与改进[J];计算机工程;2009年02期

5 黄超;周宁;倪佑生;;基于蚁群算法的攻击图分析[J];计算机工程;2009年18期

6 秦永彬;许道云;;警示传播算法的原理分析及算法改进[J];计算机工程与应用;2010年19期

7 郭毅可;韩锐;;云计算中的弹性算法:概要和展望[J];上海大学学报(自然科学版);2013年01期

8 牛玉静;唐棣;;双步圆的反走样生成算法[J];计算机工程与应用;2010年23期

9 肖璞;;XML索引更新算法的改进[J];南京工程学院学报(自然科学版);2010年03期

10 周骏;陈鸣;张佳明;;两类频繁项算法在网络流上的适用性评估[J];计算机工程;2011年16期

相关会议论文 前10条

1 黄纪武;毛泽华;李松涛;张锦雄;;SPMD并行查找算法的MPI实现[A];广西计算机学会——2004年学术年会论文集[C];2004年

2 黄纪武;毛泽华;李松涛;张锦雄;;SPMD并行查找算法的MPI实现[A];广西计算机学会2004年学术年会论文集[C];2004年

3 符丽锦;覃华;邓海;孙欣;;一种改进的Apriori算法的研究[A];广西计算机学会2012年学术年会论文集[C];2012年

4 王东锋;王军民;陈英武;;模糊定性仿真理论研究与算法实现[A];'2000系统仿真技术及其应用学术交流会论文集[C];2000年

5 赵唯;;晶粒度评级的改进算法[A];中国图象图形科学技术新进展——第九届全国图象图形科技大会论文集[C];1998年

6 刘启文;;可扩展的图形学算法演示系统的研究[A];’2004计算机应用技术交流会议论文集[C];2004年

7 佘智;蒋泰;朱延生;;基于Type C协议的防冲突改进算法[A];广西计算机学会25周年纪念会暨2011年学术年会论文集[C];2011年

8 朱绍文;赵培;朱秋云;;基于pSPADE并行挖掘序列算法的研究[A];2003年中国智能自动化会议论文集(下册)[C];2003年

9 杨霞;;新的基于启发式蚁群算法的QoS路由算法[A];广西计算机学会2009年年会论文集[C];2009年

10 陈黎飞;姜青山;董槐林;;基于图形轮廓的快速聚类算法[A];第二十三届中国数据库学术会议论文集(研究报告篇)[C];2006年

相关博士学位论文 前10条

1 钟永腾;基于近场MUSIC算法的复合材料结构健康监测研究[D];南京航空航天大学;2014年

2 刘燕;入侵杂草优化算法在阵列天线综合中的应用[D];西安电子科技大学;2015年

3 苗义烽;突发事件下的列车运行调度模型与算法研究[D];中国铁道科学研究院;2015年

4 杨玉婷;头脑风暴优化算法与基于视频的非接触式运动定量分析方法研究[D];浙江大学;2015年

5 刘杰;全局优化问题的几类新算法[D];西安电子科技大学;2015年

6 柏静;基于多种混合策略的人工蜂群算法改进研究[D];山东师范大学;2016年

7 孔翔宇;几类优化问题的人工蜂群算法[D];西安电子科技大学;2016年

8 匡立;分形网络的理论、算法及应用研究[D];武汉大学;2015年

9 单美静;求解非线性实代数系统的混合算法研究[D];华东师范大学;2008年

10 邱剑锋;人工蜂群算法的改进方法与收敛性理论的研究[D];安徽大学;2014年

相关硕士学位论文 前10条

1 安世勇;命题逻辑中随机3-SAT问题算法研究[D];西南交通大学;2015年

2 毕晓庆;油气探矿权竞争性出让系统设计与实现[D];中国地质大学(北京);2015年

3 王明明;铁路大机与线路固定设施间距检测算法研究[D];西南交通大学;2015年

4 李静;基于视频图像序列的运动目标检测与跟踪算法研究[D];宁夏大学;2015年

5 刘贝玲;基于天地图的租房平台开发及其关键技术研究[D];西南交通大学;2015年

6 曹海锋;IDS中串匹配臭算法并行优化研究[D];西安建筑科技大学;2015年

7 周攀;基于蚁群算法的山区高速铁路隧道火灾应急疏散最优路径研究[D];西南交通大学;2015年

8 张路奇;基于改进蚁群算法的WSN路由协议的研究[D];中国地质大学(北京);2015年

9 王晓晨;入侵杂草优化算法的应用与改进[D];长安大学;2015年

10 信琴琴;手势控制和识别算法研究[D];闽南师范大学;2015年



本文编号:1944365

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1944365.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户63b96***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com