基于云计算的设备状态维护关键技术研究
本文选题:云计算 + 设备状态维护 ; 参考:《西安科技大学》2017年硕士论文
【摘要】:设备维护作为提升现代化企业核心竞争力的重要因素,是企业生产效益和经济效益的重要保证,如何制定设备的维修计划以及采取何种维修行动是企业进行设备维护需要解决的关键性问题。设备运行低故障甚至零故障的期望,使得企业更加注重运用先进的检测、诊断技术保证设备的健康运行,与此同时也产生了大量的设备运行、故障等方面的信息。针对上述问题,本文将云计算技术和设备维护技术相结合,提出了基于Hadoop的设备状态维护云平台,为现代企业进行设备维护提供了一种新方法和新思路。首先,基于Hadoop技术,建立设备状态维护云平台的体系架构,对网络各层进行布局,并进一步设计设备状态维护服务层在设备维修管理方面的功能模块,根据各功能模块的作用对其进行详细论述。其次,研究以期望平均维护总费用最小为目标的设备状态维护模型,综合分析考虑设备失效率、最小修理费用和停机造成的损失等因素对模型的影响,在此基础上,提出一种基于遗传算法的决策模型优化求解方法,并进行实例验证。最后,为了提高和优化计算速度,研究基于MapReduce计算模型和遗传算法相结合的快速求解方法,提高求解效率,并开发程序和验证。通过对基于云计算的设备状态维护关键技术研究,可以有效的为设备维护行动提供决策建议,并且具有求解速度快,资源利用合理等优势,很好的满足了企业的需要也促进了设备维护技术的进步。
[Abstract]:As an important factor to enhance the core competitiveness of modern enterprises, the maintenance of equipment is an important guarantee for the production and economic benefits of enterprises. How to make maintenance plan and how to take maintenance action are the key problems to be solved. The expectation of low fault or zero fault makes the enterprise pay more attention to the application of advanced detection and diagnosis technology to ensure the healthy operation of the equipment. At the same time it also produces a lot of equipment operation fault and other aspects of information. Aiming at the above problems, this paper combines cloud computing technology with equipment maintenance technology, and puts forward a state maintenance cloud platform based on Hadoop, which provides a new method and a new idea for modern enterprises to carry out equipment maintenance. First of all, based on the Hadoop technology, the system architecture of the equipment state maintenance cloud platform is established, and the layout of each layer of the network is carried out, and the function module of the equipment state maintenance service layer in the equipment maintenance management is further designed. According to the function of each functional module, it is discussed in detail. Secondly, the paper studies the equipment state maintenance model, which aims at the minimum average total maintenance cost, and comprehensively analyzes the effects of the failure rate, the minimum repair cost and the loss caused by downtime on the model. A decision model optimization method based on genetic algorithm is proposed and verified by an example. Finally, in order to improve and optimize the calculation speed, a fast solution method based on the combination of MapReduce computing model and genetic algorithm is studied to improve the efficiency of the solution, and develop the program and verify it. Through the research on the key technology of equipment state maintenance based on cloud computing, it can effectively provide decision advice for equipment maintenance, and has the advantages of fast solution, reasonable utilization of resources and so on. Very good to meet the needs of enterprises and promote the progress of equipment maintenance technology.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP3;TP18
【参考文献】
相关期刊论文 前10条
1 姚剑峰;赵玉成;倪国强;沈华;刘文峰;胡小锋;;基于云计算的电网调度防误系统集成架构及关键技术[J];电力信息与通信技术;2016年11期
2 景博;汤巍;黄以锋;杨洲;;故障预测与健康管理系统相关标准综述[J];电子测量与仪器学报;2014年12期
3 尹振鹤;;云计算的特点及应用分析[J];硅谷;2014年23期
4 张黎军;赵霞;;基于大数据分析的旅游管理服务系统[J];信息通信;2014年11期
5 任仁;;Hadoop在大数据处理中的应用优势分析[J];电子技术与软件工程;2014年15期
6 王继业;程志华;彭林;周爱华;朱力鹏;;云计算综述及电力应用展望[J];中国电力;2014年07期
7 胡瑾秋;张来斌;胡春艳;李文强;;基于数据自组织挖掘的机械设备状态退化预警方法[J];中国石油大学学报(自然科学版);2014年03期
8 崔曼;薛惠锋;;基于云计算的智能决策支持系统研究[J];管理现代化;2014年02期
9 黄志澄;;航天大数据:从大科学到大事业[J];国际太空;2013年12期
10 林闯;苏文博;孟坤;刘渠;刘卫东;;云计算安全:架构、机制与模型评价[J];计算机学报;2013年09期
相关硕士学位论文 前2条
1 刘范范;MapReduce与量子进化算法的研究及应用[D];安徽大学;2012年
2 曹风兵;基于Hadoop的云计算模型研究与应用[D];重庆大学;2011年
,本文编号:1946347
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1946347.html