基于情感计算的重度瘫痪患者人机需求交互研究
本文选题:瘫痪康复 + 视频信息 ; 参考:《济南大学》2017年硕士论文
【摘要】:在目前社会中,经济发展使得人们生活水平逐渐提高,与此同时,因为车祸、中风等导致重度瘫痪的人员也逐渐增多。这不仅给患者的生理以及心理造成巨大损害,其治疗与康复工作也给家庭带来了较为沉重的负担。重度瘫痪患者中有一类比较特殊的情况:丧失语言能力且四肢失去活动能力,但大脑意识清醒,仍然具有头部活动能力与眼嘴张闭能力。据山东中医药大学附属医院粗略统计,这类患者占到了重度瘫痪患者总人数的10%左右。如果有办法能获取这类患者的真实需求,使患者能够自主控制康复机械臂或康复床等康复机械达到照料自己的目的,降低监护成本和负担,减少患者痛苦,同时也会解决很多家庭问题。这类患者具有清醒的自主意识和正常的头部以及面部动作,因此可以采用摄像头采集患者头部以及眼嘴动作视频信息,利用情感计算相关技术对这些动作进行识别与翻译,得到患者真实需求(喝水、坐起、翻身等)的方法。本课题具体研究内容是基于情感计算的重度瘫痪患者人机需求交互。其中“情感计算”指的是对于头部动作(左右摇头、上下摆头)与面部动作(眼睛睁闭、嘴巴张闭)的识别。其中“人机需求交互”方式是:对于患者的常用、紧急的需求(喝水、求救等)由特定动作组合的方式直接发出;对于普通的需求(坐起、翻身等),患者通过动作组合控制系统光标移动,模拟鼠标操作选择需求按钮向康复床发出动作需求。主要工作包括:(1)创建了重度瘫痪患者层次需求模型,根据该模型设计了通过情感控制模拟鼠标操作的交互方式与交互界面;(2)将情感计算中的头部动作与面部动作识别算法进行了研究与改进,通过区域化的头部动作识别算法、基于灰度曲面的眼睛睁闭动作识别算法以及基于亮度的嘴部动作识别算法获得了较好的动作识别效果;(3)开发了一套基于上述模型与算法的重度瘫痪患者人机需求交互系统,并取得了较好的测试效果。本文的创新点在于:(1)首次采用情感计算的方式进行重度瘫痪患者需求获取;(2)构建了重度瘫痪患者层次需求模型,进而开发了相应的人机交互系统。本研究成果结合该项目其他参与单位所研制的康复床等机械设备,使患者可以自主完成生活起居以及部分康复动作,大幅度减少看护人员工作量,提高患者生活与康复质量。
[Abstract]:In the present society, the economic development makes people's living standard improve gradually, at the same time, because of the traffic accident, the stroke and so on causes the serious paralysis person also to increase gradually. This not only causes great damage to the patient's physiology and psychology, but also brings heavy burden to the family. Among the patients with severe paralysis, there are some special cases: loss of speech ability and limb inactivity, but the brain is conscious and still has the ability of head movement and mouth opening and closing. According to the statistics of affiliated Hospital of Shandong University of traditional Chinese Medicine, these patients account for about 10% of the total number of patients with severe paralysis. If there is a way to obtain the real needs of such patients so that they can control the rehabilitation arm or the rehabilitation machinery such as the rehabilitation bed to achieve the purpose of taking care of themselves, reducing the cost and burden of guardianship, and reducing the suffering of the patients, It also solves a lot of family problems. These patients have a clear sense of autonomy and normal head and facial movements, so they can use a camera to capture video information of head and mouth movements, and use emotional computing techniques to recognize and translate these movements. Get the patient's real needs (drink, sit up, turn over, etc.). The specific content of this research is based on emotional calculation of severe paralysis patients with human-computer interaction. "emotional computing" refers to the recognition of head movements (left and right head shaking, up-and-down head swinging) and facial movements (eyes open, mouth open). The "man-machine demand interaction" approach is: for patients commonly used, urgent needs (water, help, etc.) are sent out directly by a specific combination of actions; for ordinary needs (sit up, etc.) Turning over and so on, the patient controls the cursor movement of the system through the action combination, and simulates the mouse operation selection demand button to issue the action demand to the rehabilitation bed. The main work includes the creation of a hierarchical demand model for severely paralyzed patients. According to this model, the interactive mode and interface of simulating mouse operation by emotion control are designed. The recognition algorithm of head action and facial movement in emotion calculation is studied and improved, and the recognition algorithm of head action is regionalized. The recognition algorithm based on gray surface and the recognition algorithm of mouth movement based on luminance have obtained better action recognition effect. A set of man-machine demand interaction system of severe paralysis patients based on the above model and algorithm has been developed. Good test results have been obtained. The innovation of this paper is that: (1) for the first time, emotional calculation is used to obtain the needs of patients with severe paralysis. (2) the hierarchical demand model of patients with severe paralysis is constructed, and the corresponding human-computer interaction system is developed. The results of this study combined with the rehabilitation bed and other mechanical equipment developed by other participating units of the project enable the patients to complete their daily living and part of the rehabilitation activities on their own, greatly reduce the workload of nursing staff, and improve the quality of patients' life and rehabilitation.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP11
【参考文献】
相关期刊论文 前10条
1 黄建;李文书;高玉娟;;人脸表情识别研究进展[J];计算机科学;2016年S2期
2 姚鹏飞;盛鑫军;郭伟超;华磊;朱向阳;;基于表面肌电信号与近红外光谱技术联合解码的仿人假手控制系统[J];中国康复医学杂志;2016年05期
3 任安虎;刘贝;;基于Adaboost的人脸识别眨眼检测[J];计算机与数字工程;2016年03期
4 曲斯伟;宋为群;;脑-机接口技术在卒中患者康复中的研究进展[J];中国脑血管病杂志;2016年03期
5 张毅;廖巧珍;罗元;;融合二阶HOG与CS-LBP的头部姿态估计[J];智能系统学报;2015年05期
6 方又方;喻洪流;官龙;易金花;张颖;石萍;;基于肌电触发的上肢康复训练机器人的实现[J];上海理工大学学报;2015年04期
7 胡进;侯增广;陈翼雄;张峰;王卫群;;下肢康复机器人及其交互控制方法[J];自动化学报;2014年11期
8 唐云祁;孙哲南;谭铁牛;;头部姿势估计研究综述[J];模式识别与人工智能;2014年03期
9 杨启志;曹电锋;赵金海;;上肢康复机器人研究现状的分析[J];机器人;2013年05期
10 谭民;王硕;;机器人技术研究进展[J];自动化学报;2013年07期
相关会议论文 前1条
1 董力赓;陶霖密;徐光yP;;头部姿态和动作的识别与理解[A];第三届和谐人机环境联合学术会议(HHME2007)论文集[C];2007年
相关博士学位论文 前1条
1 史小华;坐/卧式下肢康复机器人研究[D];燕山大学;2014年
相关硕士学位论文 前7条
1 赵琳;基于人脸识别的疲劳驾驶监控方法研究[D];长春工业大学;2015年
2 杨伟健;基于视觉和肌电信息融合的智能轮椅人机接口技术研究及应用[D];杭州电子科技大学;2015年
3 李蕾;增强现实应用中的头部动作识别技术研究[D];北方工业大学;2014年
4 刘军;复杂环境下驾驶员眼睛定位及眼睛状态识别算法研究[D];华南理工大学;2014年
5 刘小燮;脑机交互结合功能性电刺激康复训练新技术对慢性期脑卒中大脑可塑性的影响[D];中国人民解放军医学院;2014年
6 梁海燕;基于Kinect动作驱动的三维细微面部表情实时模拟[D];燕山大学;2013年
7 杨景旭;利用Kinect估计人体头部姿态[D];南京理工大学;2012年
,本文编号:1956799
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1956799.html