基于图书销售数据的出版选题预测应用研究
本文选题:选题预测 + 数据挖掘 ; 参考:《北方工业大学》2017年硕士论文
【摘要】:近年来,数据挖掘技术的广泛研究与应用引起了各界的极大关注,各行各业都迫切需要将企业数据转换成有用的信息和知识。图书出版行业在挑战与机遇中发展,互联网正在冲击着包括出版产业在内的各行各业,与此同时也为出版产业带来新的契机,出版产业必将不断融合新型计算机技术,并最终诞生全新的产业模式和产业链条,图书出版业采用先进数据挖掘技术势在必行。针对出版选题策划依赖主观经验的问题,对用户需求与当前社会热点调研不准确的潜在问题,通过对图书销售市场的研究分析,根据图书销售市场短期的波动性与中长期的周期性特点,提出了综合时间序列预测算法与神经网络算法分别对中长期与短期选题进行预测。中长期预测方面,采用Holt-Winters时间序列预测模型按图书类别预测图书销量,为出版单位做出合理的选题类别策划提供依据,辅助以选题耗费时间预测,避免出版单位因延误销售旺季造成巨大损失,减少图书出版过程中大量人、财、物力的不必要消耗。短期预测方面,采用神经网络模型对各地域的指定图书选题提供印刷量的预测,其中通过对作者热度加权的改进模型提高对热门事件的预测精准度。具体采用JSOUP框架爬取新浪微博热搜作者与热搜词语,构建热搜信息库,对作者信息与内容信息通过热点判断后,进行热门作者与热门内容加权。更加精准的把握类似"诺奖效应"带来的巨大收益,辅助图书选题工作人员在印刷量安排上做出正确的判断。本课题设计了基于图书销售数据的选题预测微信公众账号,为出版单位工作人员提供可靠的选题类别预测与印刷量预测,通过选题预测可有效把控市场规律,迎合用户消费倾向,有效减少错过最佳销售时机与印刷量分配不均的情况,避免造成库存积压导致大量人力、物力与财力的消耗,有效的提高出版单位经济效益。
[Abstract]:In recent years, the extensive research and application of data mining technology has aroused great concern from all walks of life. All kinds of industries urgently need to convert enterprise data into useful information and knowledge. The book publishing industry is developing in challenges and opportunities. The Internet is impacting all kinds of industries, including the publishing industry. At the same time, it also brings new opportunities for the publishing industry, and the publishing industry will continue to integrate new computer technology. Finally, a brand-new industrial model and industrial chain were born. It is imperative for the book publishing industry to adopt advanced data mining technology. In view of the problem that the topic planning of publishing depends on subjective experience and the potential problem that the user's demand and the current social hot spot investigation are not accurate, through the research and analysis of the book sales market, According to the short-term volatility of book sales market and the periodicity of medium and long term, a comprehensive time series prediction algorithm and a neural network algorithm are proposed to predict the short term and long term topics, respectively. In the aspect of medium and long term prediction, the Holt-Winters time series model is used to predict the book sales according to the book category, which provides the basis for the publishing unit to make a reasonable topic selection planning, and assists in the time-consuming prediction with the topic selection. In order to avoid the huge loss caused by the late sales season, the publishing unit will reduce the unnecessary consumption of a large number of people, money and material resources in the course of book publishing. In the aspect of short-term prediction, the neural network model is used to predict the number of selected titles of selected books in various regions, in which the accuracy of prediction of hot events is improved by the improved model of the author's heat weighting. The author and the hot search words of Sina Weibo are crawled by JSOUP frame, and the hot search information database is constructed. After the author's information and content information are judged by hot spot, the hot author and hot content are weighted. More accurate grasp similar to the "Nobel Prize effect" bring huge benefits, assist book selection staff in the print volume arrangements to make a correct judgment. In this paper, the author designs a public account of subject selection prediction based on book sales data, which can provide reliable prediction of subject selection category and print quantity for the staff of publishing units, and can effectively control the market rules through the topic selection prediction. In order to meet the consumption tendency of users, it can effectively reduce the situation of missing the best sales opportunity and the uneven distribution of printing quantity, avoid causing a large amount of manpower, material and financial resources to be consumed as a result of overstocking of stock, and effectively improve the economic benefits of publishing units.
【学位授予单位】:北方工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F274;TP311.52;TP183
【参考文献】
相关期刊论文 前10条
1 林海;康宝中;;基于Holt-Winters时间序列的图书选题预测模型[J];数字技术与应用;2017年03期
2 傅祚华;;选题策划与出版流程[J];中国编辑;2016年02期
3 伦淑娴;林健;姚显双;;基于小世界回声状态网的时间序列预测[J];自动化学报;2015年09期
4 洪鹏;余世明;;基于时间序列分析的自动售货机销量预测[J];计算机科学;2015年S1期
5 韩敏;许美玲;穆大芸;;无核相关向量机在时间序列预测中的应用[J];计算机学报;2014年12期
6 彭帅英;李广杰;彭文;马建全;王雪冬;秦胜伍;;基于改进遗传算法的Holt-Winters模型在采空沉陷预测中的应用[J];吉林大学学报(地球科学版);2013年02期
7 李长青;;如何透视图书销售数据背后的奥秘——图书销售数据定量分析方法浅探[J];科技与出版;2008年03期
8 蔡鑫;;电信数据挖掘数据准备过程的规范化设计[J];计算机工程;2007年24期
9 刘雨露;;数据挖掘在高校学生管理决策中的应用模式分析[J];成都信息工程学院学报;2006年03期
10 张颖,杨兰英;时间数列分析中的加法模型与乘法模型[J];统计与信息论坛;2005年04期
相关硕士学位论文 前4条
1 陈东河;基于图书市场分析的选题方案研究及应用[D];北方工业大学;2016年
2 莫海燕;随机神经网络预测模型及金融市场波动和相关性的研究[D];北京交通大学;2015年
3 沙川;Holt-Winters时间序列模型参数估计和预测[D];南京大学;2011年
4 吴瑕;数据挖掘技术在教学管理中的应用研究[D];哈尔滨工程大学;2007年
,本文编号:1982206
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1982206.html