基于组合导航的汽车姿态数据采集系统设计
发布时间:2018-06-12 00:51
本文选题:姿态解算 + 粒子滤波 ; 参考:《中北大学》2017年硕士论文
【摘要】:本文设计了一套基于组合导航的汽车姿态数据采集系统。系统以车辆为研究目标,测量车辆的姿态角信息和定位信息。系统采集汽车的三轴地磁数据、加速度数据、角速率数据、经纬度数据、高度数据及速度数据,在单片机STM32F107V的控制下,采用内嵌TCP/IP协议的芯片SIM5360作为无线通信模块,借用GPRS网络无线传输至PC机。在PC机上,通过粒子滤波算法对三轴加速度数据和三轴角速度数据滤波,然后对三轴加速度数据、三轴角速度数据和三轴地磁数据采用条件式姿态解算算法解算得到汽车姿态角。仅根据车辆的姿态角是不能对驾驶员综合驾驶行为做出分析的,需要结合地理地貌信息,所以采用捷联惯导和GPS组合实现定位功能。主要工作和研究成果包括:(1)以避免交通事故为目的,避开前人以特定不良驾驶行为为研究对象的惯性思维,以车为研究对象,通过对车辆的信息研究分析来预测交通安全隐患,以此设计出一套基于组合导航的汽车姿态数据采集系统。(2)采用了一种基于粒子滤波的条件式姿态解算算法,使得获取的姿态角精度提高。并通过仿真分析证明了算法的有效性。(3)单一的汽车姿态不能判断汽车是否安全行驶,道路拓扑结构也是影响因素之一,本文给系统增加定位功能以排除这一影响。系统对姿态数据的采集实质上是捷联导航定位的一个基础功能,所以借此采用GPS和捷联惯导组合来对系统实现更好的定位。文中用Kalman滤波、噪声有限记忆在线计算自适应Kalman滤波、联邦Kalman滤波及非线性扩展Kalman滤波等四种算法分别对捷联惯导信息和采集的GPS信息进行融合,通过仿真分析,最后选取了融合效果最好的非线性扩展Kalman滤波构建的组合导航系统。(4)通过实验验证了系统的可用性。
[Abstract]:A vehicle attitude data acquisition system based on integrated navigation is designed in this paper. The system takes the vehicle as the research object, measures the vehicle attitude angle information and the positioning information. The three axis geomagnetic data, acceleration data, angular rate data, latitude and longitude data, height data and velocity data are collected. The chip SIM5360 embedded in TCP / IP protocol is used as wireless communication module under the control of single chip microcomputer STM32F107V. Wireless transmission from GPRS network to PC. On PC, triaxial acceleration data and triaxial angular velocity data are filtered by particle filter algorithm, and then triaxial acceleration data are filtered. Three axis angular velocity data and three axis geomagnetic data are calculated by conditional attitude algorithm. Based on the attitude angle of the vehicle, the comprehensive driving behavior of the driver can not be analyzed, so the strapdown inertial navigation system and GPS are used to realize the positioning function. The main work and research results include: (1) to avoid traffic accidents, to avoid the inertia thinking of predecessors who take specific bad driving behavior as the research object, to take cars as the research objects, and to predict the hidden dangers of traffic safety by studying and analyzing the information of vehicles. A vehicle attitude data acquisition system based on integrated navigation is designed in this paper. A conditional attitude resolution algorithm based on particle filter is used to improve the precision of the attitude angle obtained. The simulation results show that the algorithm is effective. 3) the single vehicle posture can not judge whether the vehicle is safe or not, and the road topology is one of the influencing factors. In this paper, the location function is added to the system to eliminate this influence. The acquisition of attitude data is essentially a basic function of strapdown navigation and positioning, so GPS and strapdown inertial navigation are used to achieve better positioning of the system. In this paper, Kalman filter, noise finite memory on-line calculation adaptive Kalman filter, federated Kalman filter and nonlinear extended Kalman filter are used to fuse strapdown inertial navigation information and collected GPS information respectively. Finally, the integrated navigation system. 4, which is constructed by nonlinear extended Kalman filter, which has the best fusion effect, is selected. The availability of the system is verified by experiments.
【学位授予单位】:中北大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP274.2;U463.6
【参考文献】
相关期刊论文 前10条
1 张文瑞;张丕状;翟子雄;;一种基于六姿态模型的加速度计校准方法研究[J];传感器与微系统;2016年03期
2 王君帅;王新龙;;SINS/GPS紧组合与松组合导航系统性能仿真分析[J];航空兵器;2013年02期
3 雷恩思;;基于MSP430单片机的时钟系统设计[J];机电信息;2012年27期
4 卓胜华;徐建闽;任保利;谭政;;基于手部姿势判断驾驶员驾驶行为的研究[J];信息技术;2012年05期
5 赵寒涛;;基于GPRS和PLC的集中供热数据采集系统[J];黑龙江科技信息;2010年03期
6 宋丽君;秦永元;;MEMS加速度计的六位置测试法[J];测控技术;2009年07期
7 陈勇;黄琦;刘霞;张昌华;;一种全天候驾驶员疲劳检测方法研究[J];仪器仪表学报;2009年03期
8 张荣辉;贾宏光;陈涛;张跃;;基于四元数法的捷联式惯性导航系统的姿态解算[J];光学精密工程;2008年10期
9 张宏;;布尔莎—沃尔夫转换模型的几何证明[J];测绘与空间地理信息;2006年02期
10 韩相军;关永;王雪立;;基于DSP的疲劳驾驶实时监测系统研究[J];计算机技术与发展;2006年02期
相关博士学位论文 前1条
1 张明恒;基于面部朝向的驾驶员精神分散监测方法研究[D];吉林大学;2007年
,本文编号:2007474
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2007474.html