基于深度卷积神经网络的室外场景理解研究
[Abstract]:Scene understanding is a hot topic in the field of computer vision and artificial intelligence. Its research results have been widely used in many fields such as robot navigation, network search, security monitoring, medical care and so on. Various branch tasks of scene understanding, such as target detection, image semantic segmentation and so on, have made a breakthrough in recent years, but there are still many shortcomings. For example, it is difficult to obtain reliable and robust features for dynamic target classification in the scene because of the deformation of the target itself and the interference of external factors. Deep convolution neural network (Deep Convolutional Neural Networks,DCNN) can effectively realize semantic classification of scene images by end-to-end feature learning, but it is difficult to achieve accurate semantic segmentation of scene images. The main contents of this paper are as follows: 1) first of all, a dynamic object classification method based on multi-task space pyramid pool DCNN is proposed. Firstly, the dynamic object of scene in video is extracted by Gao Si mixed model, and the complete target image block is obtained by morphological processing. Then the target image block is sent into the multi-task space pyramid to pool DCNN to realize the classification of the target image block and the semantic label is obtained at the same time. The experimental results show that the high level convolution features are robust to partial occlusion, overlap, angle change, etc. Multi-task space pyramidal DCNN can achieve high classification accuracy and give accurate target semantic tags in dynamic target classification tasks. An outdoor scene semantic segmentation method combining DCNN and MeanShift image segmentation algorithm is proposed. Firstly, the scene image is presegmented by MeanShift algorithm, and then the sample image blocks are collected randomly in each local region after segmentation, and the probability of classification is obtained by sending them into DCNN. Finally, the category probability of the sample image block of each local region is averaged to obtain its semantic label, and then the semantic segmentation is realized. The effects of the size of DCNN convolution kernel, the number of convolution cores and the expansion of training data set on the result of scene image semantic segmentation are studied and analyzed. Compared with the SEVI-BOVW method based on SIFT local feature descriptor, the experimental results show that the accuracy and recognition speed of the method are greatly improved. Finally, a scene understanding method combining object detection and semantic segmentation is proposed based on DCNN,. It is combined with the semantic segmentation method of background object based on HOG (Histogram of Oriented Gradients) texture feature and support Vector Machine (Support Vector Machine,SVM) classification algorithm in the campus navigation of robot. In this method, the foreground object in scene image is detected by Faster R-CNN algorithm, and the foreground object in scene image is segmented by Deeplab-CRFs model. Finally, GrabCut foreground extraction algorithm detects the two objects. The segmentation results combine to achieve a more accurate and complete semantic segmentation of the target object. Experiments show that the proposed method can detect and segment objects accurately and comprehensively, and can be effectively used in robot campus navigation.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41;TP183
【相似文献】
相关期刊论文 前10条
1 顾勇;张灿果;龚志广;;基于图像块分割融合算法在医学图像中的应用[J];河北建筑工程学院学报;2007年02期
2 李天伟;黄谦;郭模灿;何四华;;图像块混沌特征在海面运动目标检测中的应用[J];中国造船;2011年02期
3 李军;部分图像块的显示及特技制作技巧[J];电脑编程技巧与维护;1997年04期
4 李生金;蒲宝明;贺宝岳;王维维;;基于图像块的滞留物/移取物的检测方法[J];小型微型计算机系统;2014年01期
5 赵德斌;陈耀强;高文;;基于图像块方向的自适应无失真编码[J];模式识别与人工智能;1998年01期
6 陈琦,李华,朱光喜;一种新的应用于屏幕共享的图像块识别算法[J];电讯技术;2000年06期
7 刘尚翼;霍永津;罗欣荣;白仲亮;魏林锋;项世军;;基于图像块相关性分类的加密域可逆数据隐藏[J];武汉大学学报(理学版);2013年05期
8 陈奋,闫冬梅,赵忠明;一种快速图像块填充算法及其在遥感影像处理中的应用[J];计算机应用;2005年10期
9 马文龙,余宁梅,银磊,高勇;图像块动态划分矢量量化[J];计算机辅助设计与图形学学报;2005年02期
10 李维钊,王广伟;图像块平坦测度与系数扫描方式选择[J];山东电子;2000年04期
相关会议论文 前2条
1 李赵红;侯建军;宋伟;;基于图像块等级模型的多重认证水印算法[A];第八届全国信息隐藏与多媒体安全学术大会湖南省计算机学会第十一届学术年会论文集[C];2009年
2 钟凡;莫铭臻;秦学英;彭群生;;基于WSSD的不规则图像块快速匹配[A];中国计算机图形学进展2008--第七届中国计算机图形学大会论文集[C];2008年
相关博士学位论文 前5条
1 霍雷刚;图像处理中的块先验理论及应用研究[D];西安电子科技大学;2015年
2 钦夏孟;稠密图像块匹配方法及其应用[D];北京理工大学;2015年
3 林乐平;基于过完备字典的非凸压缩感知理论与方法研究[D];西安电子科技大学;2016年
4 向涛;复杂场景下目标检测算法研究[D];电子科技大学;2016年
5 宋伟;几类数字图像水印算法的研究[D];北京交通大学;2010年
相关硕士学位论文 前10条
1 王荣丽;基于半监督学习的目标跟踪方法研究[D];浙江师范大学;2015年
2 祝汉城;数字图像的客观质量评价方法研究[D];中国矿业大学;2015年
3 陆杰;使用自组织增量神经网络实现单层非监督特征学习[D];南京大学;2015年
4 熊耀先;基于图像块统计特性的EPLL遥感图像复原方法[D];国防科学技术大学;2014年
5 张书扬;基于冗余字典的图像压缩感知技术研究[D];吉林大学;2016年
6 杨存强;基于图像块多级分类和稀疏表示的超分辨率重建算法研究[D];天津工业大学;2016年
7 李向向;视频监控下实时异常行为检测研究[D];南京邮电大学;2016年
8 程晓东;基于帧间块约束和进化计算的视频压缩感知重构方法[D];西安电子科技大学;2016年
9 李小青;基于脊波冗余字典和多目标遗传优化的压缩感知图像重构[D];西安电子科技大学;2016年
10 文俊;基于深度卷积神经网络的室外场景理解研究[D];杭州电子科技大学;2016年
,本文编号:2293486
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2293486.html