当前位置:主页 > 科技论文 > 自动化论文 >

绳驱连续型冗余自由度机器人控制研究

发布时间:2018-12-31 14:36
【摘要】:连续型机器人是依据仿生学原理开发的新型机器人,在空间探测、核电维修、紧急救援等方面具有广阔的应用前景,是目前机器人研究领域的热点。机器人依靠仿生皮肤和仿生躯干实现运动,对于含有刚性脊柱的连续型机器人,其运动能力主要依靠仿生躯干提供。本文依据生物躯干的超冗余特性和生物弹性结构开发出了可作为连续型机器人躯干的新型仿生机构,并通过动力学优化和控制率设计,保证了其优异的运动特性。利用仿生设计方法,该仿生机构采用绳驱超冗余度机构,由六个串联的万向节和六组并联弹簧组成,共12个自由度,整个模型由18根绳线驱动。在动力学模型中绳线和弹簧简化为外界作用力,利用D-H参数描述机构的位姿,通过力系简化减少作用力数目,并求得绳线和弹簧作用力与等效关节力矩之间的雅可比矩阵。依据拉格朗日方程建立该机构的动力学方程,并分析其动力学特性,验证了机构设计的合理性。仿生机构的超冗余特性和冗余驱动特性,决定了其运动速度从操作空间向关节空间、驱动力从关节空间向驱动空间转换时均存在多解的情况,因此运动学和动力学层面存在明显的可优化特性。使用待优化目标,利用梯度法和零空间法可以选取合理的雅可比矩阵零空间向量,从而实现机构在运动过程中的速度优化和驱动力优化。由于存在两组欠定关系,该系统的可优化能力较强,可以实现多目标优化。控制系统用于维持机构动作过程的稳定性,现阶段机器人普遍使用的控制方式为运动PD控制,不利于复杂机构的运动实现。本文利用计算力矩控制和动力学优化方法设计出了针对该连连续型冗余自由度机器人的优化控制率,并利用李雅普诺夫函数证明了其稳定性。仿真验证表明,相比于运动PD控制,工作于该控制率下的系统具有较强的稳定性和信号跟踪能力,且能够处理驱动力超限的问题。本文利用动力学模型和优化控制率编写控制程序,通过SIMULINK和ADAMS进行联合仿真验证了该机构对于生物运动的模拟能力。仿真结果证明该机构能够很好地模拟机器人的平面运动和三维空间运动,同时具有极强的动力学优化能力,适合作为连续型机器人的仿生脊柱。
[Abstract]:Continuous robot is a new kind of robot developed according to the principle of bionics. It has a broad application prospect in space exploration, nuclear power maintenance, emergency rescue and so on. It is a hot spot in the field of robot research at present. Robots rely on bionic skin and bionic torso to achieve motion. For continuous robots with rigid spine, their motion ability is mainly provided by bionic torso. In this paper, a new bionic mechanism which can be used as the torso of continuous robot is developed according to the super-redundancy characteristics of the biological trunk and the biological elastic structure. The excellent kinematic characteristics are ensured by dynamic optimization and control rate design. By using the bionic design method, the bionic mechanism is composed of six universal joints in series and six parallel springs, with 12 degrees of freedom. The whole model is driven by 18 rope lines. In the dynamic model, the rope line and spring are simplified as external forces, the position and orientation of the mechanism are described by D-H parameters, the number of forces is reduced by simplifying the force system, and the Jacobian matrix between the rope line and spring force and the equivalent joint torque is obtained. Based on the Lagrange equation, the dynamic equation of the mechanism is established, and its dynamic characteristics are analyzed. The rationality of the mechanism design is verified. The superredundancy and redundant driving characteristics of the bionic mechanism determine that there are multiple solutions when the motion speed changes from the operating space to the joint space, and the driving force changes from the joint space to the drive space. Therefore, kinematics and dynamics have obvious optimizable properties. Using the objective to be optimized, the gradient method and the zero space method can be used to select the reasonable Jacobian matrix null space vector, thus the velocity optimization and the driving force optimization of the mechanism in the course of motion can be realized. Due to the existence of two groups of undetermined relationships, the system has a strong ability to optimize and can realize multi-objective optimization. The control system is used to maintain the stability of the mechanism action process. At present, the control mode commonly used in robot is motion PD control, which is not conducive to the movement realization of complex mechanism. In this paper, the optimal control rate for the continuous redundant robot is designed by using the method of calculating torque control and dynamic optimization, and its stability is proved by using Lyapunov function. The simulation results show that the system working at this control rate has strong stability and signal tracking ability, and can deal with the problem of driving force exceeding the limit compared with the motion PD control. In this paper, the dynamic model and optimal control rate are used to compile the control program. The simulation results of SIMULINK and ADAMS show that the mechanism is capable of simulating biological motion. The simulation results show that the mechanism can well simulate the planar and three-dimensional motion of the robot, and has a strong dynamic optimization ability, which is suitable for the bionic spine of a continuous robot.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242

【参考文献】

相关期刊论文 前5条

1 翟士民;刘荣;薛彤;;绳驱动连续型机械臂设计[J];机械工程与自动化;2015年02期

2 何斌;王志鹏;唐海峰;;软体机器人研究综述[J];同济大学学报(自然科学版);2014年10期

3 齐庆玺;黄攀峰;刘正雄;;冗余空间机器人基座姿态调整的笛卡尔路径规划[J];指挥控制与仿真;2014年01期

4 叶长龙;马书根;李斌;王越超;;三维蛇形机器人巡视者Ⅱ的开发[J];机械工程学报;2009年05期

5 陈伟海,张启先,杨宗煦,李健;冗余度机器人动力学优化控制研究[J];北京航空航天大学学报;1998年05期

相关会议论文 前1条

1 郁树梅;马书根;李斌;王越超;;水陆两栖蛇形机器人的上浮和下潜步态研究[A];第九届全国信息获取与处理学术会议论文集Ⅰ[C];2011年

相关博士学位论文 前3条

1 邵铁锋;气动柔性象鼻型连续机器人研究[D];浙江工业大学;2014年

2 王鑫;类豹型四足机器人高速运动及其控制方法研究[D];哈尔滨工业大学;2013年

3 邓奇;具弹性躯干仿生四足机器人准被动动力学研究[D];上海交通大学;2012年

相关硕士学位论文 前5条

1 刘天亮;面向狭小空间作业的绳索驱动超冗余机械臂的研究[D];哈尔滨工业大学;2016年

2 吴海波;具有可变刚度的四足机器人仿生脊柱设计与应用研究[D];北京交通大学;2016年

3 王超;线驱动硅胶软体机械臂建模与控制[D];上海交通大学;2015年

4 佘宇;冗余机械臂单关节故障下的建模与容错控制研究[D];哈尔滨工业大学;2013年

5 朱雷;自由浮动冗余度空间机器人运动规划与力矩优化方法研究[D];南京航空航天大学;2008年



本文编号:2396718

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2396718.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户26851***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com