基于Kinect可通行性区域识别
[Abstract]:Effective and reliable identification of traversable region is of great significance to the navigation of mobile robots. However, the current research results mainly focus on the limited space that sensors can detect directly, which is still a challenge for open environment. Since the traditional single sensor has its own limitations, such as the complexity of stereo vision algorithm and "shortsightedness", the high cost of lidar, and the combination of sensors put forward a very high requirement for data synchronization between sensors. In this paper, a self-supervised passable area recognition method based on Kinect sensor is proposed. The ground and obstacle can be identified and marked according to certain rules for the close-range area which can be detected effectively by Kinect. The two kinds of recognition tags are projected to the corresponding RGB image space, then the combined features of the visual and recognition tags are extracted in the image space, and the classifier is trained, and the classifier is used to classify and recognize the remote image space. Finally, the traversability of the whole image space is obtained. This paper mainly includes two parts: the first part is the close distance Kinect sensor obstacle recognition, this part introduces the Kinect software and hardware and the depth information acquisition principle, after completing the calibration and the RGB registration, Two-dimensional images combined with three-dimensional space coordinates are used to identify the ground and obstacles. The second part is based on obstacle recognition. In this part, the close area recognition category label is projected to the corresponding image space, and then the image window is divided into blocks using sliding window. Based on the combined visual features of color, texture and geometry extracted from image blocks, the combined features are combined with the category labels of corresponding image blocks to form training data to train the classifier of this paper, Fuzzy ARTMAP,. Finally, the remote image space is classified by using the classifier, and the recognition results are obtained. Finally, the effectiveness of the Kinect close-range detection algorithm and the detection of remote passable area based on image space are verified by two experiments in indoor and outdoor environments.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;TP242
【参考文献】
相关期刊论文 前8条
1 余秀丽;王丹丹;牛磊磊;宋怀波;何东健;胡少军;耿楠;;Kinect在现代农业信息领域中的应用与研究进展[J];农机化研究;2015年11期
2 朱涛;芦利斌;金国栋;;基于Kinect深度技术的障碍物在线快速检测算法[J];电子设计工程;2014年12期
3 丁晨;王君泽;瞿畅;高瞻;;Kinect体感交互技术及其在医疗康复领域的应用[J];中国康复理论与实践;2013年02期
4 杨东方;王仕成;刘华平;刘志国;孙富春;;基于Kinect系统的场景建模与机器人自主导航[J];机器人;2012年05期
5 朱效洲;李宇波;卢惠民;张辉;;基于视觉的移动机器人可通行区域识别研究综述[J];计算机应用研究;2012年06期
6 胡庭波;吴涛;;一种快速鲁棒的越野环境下自主移动机器人障碍检测算法[J];机器人;2011年03期
7 王璐;陆筱霞;蔡自兴;;基于局部显著区域的自然场景识别[J];中国图象图形学报;2008年08期
8 王荣本;李琳辉;郭烈;金立生;张明恒;;基于立体视觉的越野环境感知技术[J];吉林大学学报(工学版);2008年03期
相关博士学位论文 前2条
1 聂一鸣;高速公路自主驾驶汽车视觉感知算法研究[D];国防科学技术大学;2012年
2 朱江;非结构环境下的移动机器人认知与导航避障方法研究[D];湖南大学;2011年
相关硕士学位论文 前1条
1 赵亮;基于Kinect的障碍物探测及三维场景重建研究与实现[D];西安科技大学;2015年
,本文编号:2399214
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2399214.html