基于BP神经网络的商业银行信用风险评估研究
[Abstract]:With the rapid development of economic globalization, especially financial globalization, the financial market of our country is affected by many factors, and the instability is becoming more and more obvious. Commercial banks face both opportunities and challenges, especially the challenge of credit risk. At present, the living environment of commercial banks is becoming more and more competitive. How to manage credit risks scientifically and effectively is directly related to the healthy development of commercial banks. Commercial banks in the stage of reform, transformation and development, the original credit risk management system has been difficult to apply, the traditional analysis method can not meet its rapid development in the new situation. Based on this, based on the basic characteristics of commercial banks at the present stage, this paper attempts to apply the neural network research method to the study of credit risk management in credit operations, in order to provide an effective risk assessment technology. In this paper, the existing commercial bank credit risk assessment model is firstly analyzed and demonstrated. On the basis of defining the connotation of the commercial bank credit risk, the factors affecting the credit risk are deeply studied. In order to sum up the shortcomings of credit risk management system. Furthermore, this paper extracts 17 indexes from five levels, and brings this index system into BP neural network, thus establishing a complete credit risk assessment model of commercial banks. Finally, through extensive data collection, the accuracy of the model is studied and proved by using MATLAB statistical software. The final results show that the risk assessment model constructed in this paper has a high accuracy, which is helpful for commercial banks to evaluate the credit risk of credit business effectively, and provides a reliable reference for credit risk management. It has certain research value.
【学位授予单位】:内蒙古财经大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP183;F832.4
【参考文献】
相关期刊论文 前10条
1 马鸿雁;;基于BP神经网络的商业银行风险预警系统的研究[J];经济研究导刊;2014年24期
2 黄梦宇;;基于BP神经网络的手机银行风险预警模型研究[J];时代金融;2014年12期
3 朱虹;何泽恒;;基于BP神经网络的商业银行信用风险评估模型研究[J];对外经贸;2013年09期
4 高希;王凯;杜玉兰;;我国商业银行的中小企业信用评级指标体系构建的研究综述[J];经营管理者;2013年22期
5 罗刚飞;潘加顺;;中国银行业信用评价研究——基于16家上市银行2007-2011年数据的分析[J];上海金融;2013年07期
6 王燕;;我国商业银行信用评级指标体系研究[J];金融发展评论;2013年03期
7 白雪梅;臧微;;信用风险对中国商业银行成本效率的影响[J];财经问题研究;2013年02期
8 吴亚男;胡捷;;宏观经济因素影响下的我国商业银行信贷风险研究[J];金融经济;2012年14期
9 曾筝;;商业银行信用风险评估方法研究[J];计算机仿真;2011年08期
10 孙宁华;刘杨;;中国商业银行信用风险度量研究[J];成都理工大学学报(社会科学版);2011年03期
相关博士学位论文 前2条
1 肖珉;我国企业集团上市公司财务预警与信用风险评估研究[D];电子科技大学;2012年
2 姜明辉;商业银行个人信用评估组合预测方法研究[D];哈尔滨工业大学;2006年
相关硕士学位论文 前4条
1 张健;商业银行个人信用评估模型研究[D];广西大学;2012年
2 倪微;我国商业银行公司治理结构对银行信用风险影响的研究[D];西南财经大学;2012年
3 邵海宏;基于BP神经网络的商业银行客户信用风险评价研究[D];哈尔滨工业大学;2007年
4 王欢欢;基于BP神经网络和专家系统的商业银行信用风险预警系统研究[D];东北财经大学;2005年
,本文编号:2399315
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2399315.html