基于迭代步进值递减的果蝇优化算法在PID整定中的应用
发布时间:2019-02-14 23:41
【摘要】:果蝇优化算法在计算精度和运算速度上比传统方法有着显著的提高,在解空间上可以快速高效地得到全局最优解,但也极易陷入局部最优。为了获得自动电压调节器(AVR)控制系统的最佳PID参数,对果蝇优化算法进行改进,提出了一种迭代步进值递减的果蝇优化算法。使用改进的算法对AVR系统PID参数进行在线整定,仿真结果表明:改进的果蝇优化算法比原算法在PID控制器中获得了更好的控制性能,改进算法具有一定的实用价值。
[Abstract]:The computational accuracy and speed of Drosophila optimization algorithm are much higher than that of the traditional method. The global optimal solution can be obtained quickly and efficiently in the solution space, but it is also easy to fall into local optimum. In order to obtain the optimal PID parameters of automatic voltage regulator (AVR) control system, the optimization algorithm of Drosophila was improved, and an iterative optimization algorithm with decreasing step value was proposed. The improved algorithm is used to set the PID parameters of AVR system on line. The simulation results show that the improved Drosophila optimization algorithm has better control performance than the original algorithm in the PID controller, and the improved algorithm has some practical value.
【作者单位】: 青岛港湾职业技术学院电气工程系;
【基金】:山东省教育厅科技计划项目:双变幅机构门座式起重机关键技术研究(J15LB76)
【分类号】:TP18;TP273
[Abstract]:The computational accuracy and speed of Drosophila optimization algorithm are much higher than that of the traditional method. The global optimal solution can be obtained quickly and efficiently in the solution space, but it is also easy to fall into local optimum. In order to obtain the optimal PID parameters of automatic voltage regulator (AVR) control system, the optimization algorithm of Drosophila was improved, and an iterative optimization algorithm with decreasing step value was proposed. The improved algorithm is used to set the PID parameters of AVR system on line. The simulation results show that the improved Drosophila optimization algorithm has better control performance than the original algorithm in the PID controller, and the improved algorithm has some practical value.
【作者单位】: 青岛港湾职业技术学院电气工程系;
【基金】:山东省教育厅科技计划项目:双变幅机构门座式起重机关键技术研究(J15LB76)
【分类号】:TP18;TP273
【相似文献】
相关期刊论文 前10条
1 唐浩;;蚁群算法的研究与展望[J];牡丹江教育学院学报;2009年06期
2 邓小波;曹聪聪;龙伦海;康耀红;;蚁群算法搜索熵研究[J];海南大学学报(自然科学版);2007年04期
3 张康;顾幸生;;全局组搜索优化算法及其应用研究[J];青岛科技大学学报(自然科学版);2012年05期
4 李东晓;蒋珉;柴干;;蚁群算法优化及其在高速公路紧急救援中的应用[J];计算机技术与发展;2010年11期
5 _5文龙 ,黄,
本文编号:2422729
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2422729.html