基于支持向量机和粒子群算法的稳健优化
本文关键词:基于支持向量机和粒子群算法的稳健优化,由笔耕文化传播整理发布。
【摘要】:针对实际工程中不确定性因素与产品质量特性之间不具有显式函数关系的稳健优化问题时,代理模型的精度成为关键。本文提出一种基于支持向量机代理模型和粒子群算法的稳健优化方法,采用拉丁超立方试验设计采样布点,优化问题的目标性能函数、约束函数的均值和标准差由具有自动参数优化的支持向量机模型替代,采用粒子群优化算法对稳健优化模型进行求解。以典型的两杆结构优化为例,结果表明支持向量机代理模型的综合性能比常用的响应面、BP神经网络和Kriging模型更优越,稳健优化结果比较理想,为复杂产品的不确定性设计优化提供了一种新的思路。
【作者单位】: 成都工业职业技术学院装备制造学院;四川大学制造科学与工程学院;
【关键词】: 支持向量机 代理模型 稳健优化 粒子群算法
【基金】:四川省应用基础研究资助项目(13za03101) 含钒钛微合金切削加工机理及参数优化(2012CYG24)
【分类号】:TP18
【正文快照】: 在实际工程问题中存在大量影响产品质量的不确定性因素,如产品的几何尺寸、制造公差等,为了考虑不确定因素对产品性能影响,稳健设计[1]是一种有效的方法,它能使所设计的产品在制造和使用中当参数发生变差,或者在规定寿命内发生老化和变质使都能保持产品性能稳定的一种工程设计
【相似文献】
中国期刊全文数据库 前10条
1 吴娟;范玉妹;王丽;;关于改进的支持向量机的研究[J];攀枝花学院学报;2006年05期
2 刘硕明;刘佳;杨海滨;;一种新的多类支持向量机算法[J];计算机应用;2008年S2期
3 尹传环;牟少敏;田盛丰;黄厚宽;;单类支持向量机的研究进展[J];计算机工程与应用;2012年12期
4 王云英;阎满富;;C-支持向量机及其改进[J];唐山师范学院学报;2012年05期
5 李逢焕;;试述不确定支持向量机应用分析及改进思路[J];中国证券期货;2012年12期
6 邵惠鹤;支持向量机理论及其应用[J];自动化博览;2003年S1期
7 曾嵘,蒋新华,刘建成;基于支持向量机的异常值检测的两种方法[J];信息技术;2004年05期
8 张凡,贺苏宁;模糊判决支持向量机在自动语种辨识中的研究[J];计算机工程与应用;2004年21期
9 魏玲,张文修;基于支持向量机集成的分类[J];计算机工程;2004年13期
10 沈翠华,邓乃扬,肖瑞彦;基于支持向量机的个人信用评估[J];计算机工程与应用;2004年23期
中国重要会议论文全文数据库 前10条
1 余乐安;姚潇;;基于中心化支持向量机的信用风险评估模型[A];第六届(2011)中国管理学年会——商务智能分会场论文集[C];2011年
2 刘希玉;徐志敏;段会川;;基于支持向量机的创新分类器[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年
3 史晓涛;刘建丽;骆玉荣;;一种抗噪音的支持向量机学习方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年
4 何琴淑;刘信恩;肖世富;;基于支持向量机的系统辨识方法研究及应用[A];中国力学大会——2013论文摘要集[C];2013年
5 刘骏;;基于支持向量机方法的衢州降雪模型[A];第五届长三角气象科技论坛论文集[C];2008年
6 王婷;胡秀珍;;基于组合向量的支持向量机方法预测膜蛋白类型[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
7 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年
8 周星宇;王思元;;智能数学与支持向量机[A];2005年中国智能自动化会议论文集[C];2005年
9 颜根廷;马广富;朱良宽;宋斌;;一种鲁棒支持向量机算法[A];2006中国控制与决策学术年会论文集[C];2006年
10 侯澍e,
本文编号:440338
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/440338.html