T-S模糊时滞系统控制及模型降阶问题研究
发布时间:2017-09-11 08:35
本文关键词:T-S模糊时滞系统控制及模型降阶问题研究
更多相关文章: T-S模糊系统 时变时滞 模型降阶 稳定性分析 控制器设计
【摘要】:大量的实际系统及工业过程表现出机理复杂,非线性强等特点,传统的控制理论应用受限,且现阶段非线性控制理论分析研究仍不完善。而Takagi-Sugeno(T-S)模糊系统凭借万能逼近定理,可以实现对非线性系统的分析与综合。在工业、通讯系统、金融等各领域中,由于信息处理速度限制和信号传输过程的延迟,时滞现象普遍存在。时滞的存在不仅可能造成系统性能的衰减,甚至会使系统出现不稳定、振荡等现象。因此,带有时滞的T-S模糊系统的研究逐渐受到越来越多学者的关注。对实际物理系统建模,我们常常得到复杂的高阶数学模型,这些模型由于阶数过高而不便于系统的进一步分析和综合。另外,目前针对连续时间的T-S模糊时滞系统的稳定性分析与控制问题所得到的结论比较简单,对模糊时滞系统分析的保守性较大,而稳定性是系统正常工作的首要条件,针对以上所述问题,本文开展的工作如下:(1)研究了连续T-S模糊时滞系统的稳定性问题。针对建立的连续T-S模糊时变时滞系统模型,利用时滞区间分割的思想,引入自由权矩阵及交互式凸组合的方法,得到了低保守性的稳定性条件。(2)研究了连续T-S模糊时滞系统的控制器设计问题。基于得到的保守性较小的稳定性依赖结论,推导出T-S模糊时变时滞系统存在模糊控制器的充分条件。通过并行分布式补偿控制方法,设计出使闭环系统稳定的模糊控制器。(3)研究了连续T-S模糊时滞系统的模型降阶问题。针对建立的高阶T-S模糊时变时滞系统,构造合适的Lyapunov函数,利用Jensen不等式和交互式凸组合的方法,得到满足H?误差性能的稳定性条件。根据得到的稳定性条件,运用投影定理方法,提出高阶T-S模糊时滞系统H?模型降阶算法。最后利用锥补线性化方法将非凸可行性求解问题转化为受线性矩阵不等式约束的最小化问题进行求解。
【关键词】:T-S模糊系统 时变时滞 模型降阶 稳定性分析 控制器设计
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP13
【目录】:
- 摘要3-4
- abstract4-8
- 1 绪论8-16
- 1.1 模糊系统研究背景及意义8-9
- 1.2 T-S模糊系统概述9-11
- 1.3 本课题研究进展11-13
- 1.3.1 T-S模糊时滞系统稳定性分析11
- 1.3.2 T-S模糊系统控制问题11-12
- 1.3.3 T-S模糊系统模型降阶研究12-13
- 1.4 主要研究内容13-16
- 2 预备知识16-22
- 2.1 Lyapunov稳定性理论16-17
- 2.2 线性矩阵不等式处理方法17-19
- 2.2.1 线性矩阵不等式的一般表示形式17-18
- 2.2.2 一些标准的线性矩阵不等式问题18-19
- 2.3 并行分布式补偿原理19-20
- 2.4 本文中所用到的符号20-22
- 3 连续T-S模糊时滞系统稳定性分析及控制器设计22-42
- 3.1 引言22-23
- 3.2 问题描述23-25
- 3.3 T-S模糊时滞系统稳定性分析25-31
- 3.3.1 稳定性分析:时滞区间分割份数为 225-29
- 3.3.2 稳定性分析:时滞区间分割份数为m29-31
- 3.4 模糊控制器设计31-32
- 3.5 仿真实例32-40
- 3.6 本章小结40-42
- 4 连续T-S模糊时滞系统的模型降阶42-64
- 4.1 引言42-43
- 4.2 问题描述43-45
- 4.3 T-S模糊时滞系统的降阶分析45-59
- 4.3.1 H_∞性能分析45-52
- 4.3.2 H_∞模型降阶52-57
- 4.3.3 T-S模糊时滞系统的模型降阶算法57-59
- 4.4 仿真实例59-63
- 4.5 本章小结63-64
- 5 总结与展望64-66
- 5.1 总结64-65
- 5.2 展望65-66
- 致谢66-68
- 参考文献68-74
- 附录74
- A. 作者在攻读学位期间发表的论文目录74
【相似文献】
中国期刊全文数据库 前10条
1 冯俊娥,程兆林;一类奇异时滞系统的奇异二次指标最优控制问题[J];控制与决策;2002年06期
2 肖扬;状态空间时滞系统稳定性检验的二维方法[J];北方交通大学学报;2003年05期
3 张翼飞,曾亮,邓方林;时滞系统控制发展历程综述[J];控制工程;2004年S1期
4 陈宇杰;;基于准多项式的二阶时滞系统的稳定性分析[J];浙江理工大学学报;2006年01期
5 崔宝同;楼旭阳;;一类混合时滞系统的混沌同步与应用[J];系统工程与电子技术;2008年01期
6 陈t,
本文编号:829703
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/829703.html