假肢接受腔舒适度测试系统研发
本文选题:假肢接受腔 + 数据采集 ; 参考:《北京石油化工学院》2017年硕士论文
【摘要】:假肢接受腔是人工假体与患者残肢之间的结合部件,担负支撑和承力的功能,其设计的结构合理性和制造的精度直接影响患者使用假体的舒适性和功能性。课题针对目前假肢接受腔舒适性测量方法存在问题,研发了一种能够同时测量假肢接受腔内残肢压力、温度、湿度,以及接受腔运动状态的假肢接受腔多参数舒适性测量系统。假肢接受腔舒适性测量系统由分布式压力测量模块、温湿度测量模块、运动状态测量模块、数据传输模块、数据分析存储模块等部分组成。其中,压力测量模块和温湿度测量模块采用微小型传感器,以分布式方式安装在假肢接受腔内壁。运动状态测量模块采用基于加速度传感器的姿态测量单元,安装于接受腔外壁用于获取假肢接受腔的运动状态信息。数据传输模块具以无线方式将各传感器数据传送到数据分析存储模块,以图形化方式显示测量数据和分析结果。为尽量减小测量系统对假肢穿戴的影响,分布式压力测量模块选用薄膜式压力传感器FSR402。针对FSR402传感器输出信号特点,设计了电流/电压转换电路。基于STM32微处理单元设计了多传感器数据采集模块。该模块一方面通过内置多路AD采集多路压力传感器信号;另一方面,通过串口通讯的方式与上位PC机进行数据传输。温度、湿度测量选用具有双总线串口数据通讯方式的温湿度一体式传感器SHT15。基于单片机STC89C52设计了温湿度传感器数据采集模块。单片机通过串口通讯的方式对温湿度传感器进行配置和采集数据,通过USB数据接口与上位PC机进行数据通讯。接受腔运动状态的测量采用MTi传感器。基于底层串口通讯协议,实现了传感器配置和数据读取,基于VRML技术,在上位PC机界面中实现接受腔运动状态的三维虚拟显示。基于虚拟仪器技术,应用LabVIEW软件开发假肢接受腔多参数测量系统上位机软件,该软件可以实现对压力、温湿度及步态相关参数的采集。作为人机交互界面,可以实现数据显示、分析、存储等功能。初步完成的实验室测试实验表明,该测量系统可为假肢接受腔的舒适性评估提供数据,进而为假肢接受腔的制作改进提供客观依据。
[Abstract]:Prosthetic cavity is a joint part between prosthetic prosthesis and patient's residual limb, which has the function of supporting and bearing force. The rationality of design structure and the precision of manufacture directly affect the comfort and function of the prosthesis used by patients. In order to solve the problems in the current prosthetic cavity comfort measurement method, a multi-parameter comfort measurement system is developed, which can simultaneously measure the pressure, temperature, humidity and motion state of the prosthetic receiving cavity. The comfort measurement system of prosthetic receiving cavity is composed of distributed pressure measurement module, temperature and humidity measurement module, motion state measurement module, data transmission module, data analysis and storage module and so on. The pressure measurement module and the temperature and humidity measurement module adopt micro sensors and are installed in the inner wall of the prosthetic receiving cavity in a distributed manner. The motion state measurement module uses the attitude measurement unit based on the acceleration sensor and is installed on the external wall of the receiving cavity to obtain the motion state information of the prosthetic receiving cavity. The data transmission module transmits the sensor data to the data analysis storage module in a wireless manner, and displays the measurement data and the analysis result in a graphical manner. In order to minimize the influence of the measurement system on prosthetic wear, the distributed pressure measurement module uses a thin film pressure sensor FSR402. According to the characteristic of output signal of FSR402 sensor, the current / voltage conversion circuit is designed. A multisensor data acquisition module based on STM32 microprocessing unit is designed. On the one hand, the module collects multi-channel pressure sensor signals through built-in multi-channel AD; on the other hand, it transmits data to PC through serial communication. The temperature and humidity measurement adopts the temperature and humidity integrated sensor SHT 15 which has the double bus serial port data communication mode. The data acquisition module of temperature and humidity sensor is designed based on single chip computer STC89C52. The single chip computer configures and collects the data of temperature and humidity sensor by means of serial communication, and communicates with PC through USB data interface. MTI sensor was used to measure the motion state of the receiving cavity. Based on the bottom serial communication protocol, the sensor configuration and data reading are realized. Based on VRML technology, the three-dimensional virtual display of the motion state of the receiving cavity is realized in the upper PC interface. Based on the virtual instrument technology, LabVIEW software is used to develop the upper computer software for the multi-parameter measurement system of prosthetic receiving cavity. The software can collect the parameters of pressure, temperature and humidity and gait. As a man-machine interface, data display, analysis, storage and other functions can be realized. The experimental results show that the system can provide data for evaluating the comfort of prosthetic cavities and provide an objective basis for improving the fabrication of prosthetic cavities.
【学位授予单位】:北京石油化工学院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R496;TH789
【参考文献】
相关期刊论文 前10条
1 吴志彬;蒋宛凌;舒彬;;步态分析在下肢假肢装配中的应用[J];中国康复医学杂志;2013年12期
2 李景辉;杨立才;;基于多传感器信息融合的人体姿态解算算法[J];山东大学学报(工学版);2013年05期
3 周静;张蕾;南洋;;基于RS232-USB转换器及LabVIEW平台下温湿度采集系统的设计[J];电子测试;2012年05期
4 乔熠晖;程辉;马炎;;基于MTi的三维姿态测量系统研究[J];测试技术学报;2011年06期
5 陈乐;周浚哲;;MTi微型测姿系统数据采集及测姿算法研究[J];沈阳理工大学学报;2011年04期
6 杨辉;周强;;基于LabVIEW和AVR单片机的压力数据采集处理系统[J];化工自动化及仪表;2010年11期
7 李昂;刘虎东;;导电橡胶及其应用[J];橡胶工业;2010年09期
8 郭丽峰;陈恳;吴丹;赵旦谱;;基于LabVIEW的轮腿式机器人人机交互系统[J];微计算机信息;2010年20期
9 张凯华;王兰美;李安国;;基于LabVIEW的鞋垫式足底压力测试系统的设计与实现[J];传感器世界;2009年03期
10 曾育山;;假肢接受腔界面应力的有限元分析[J];中国组织工程研究与临床康复;2008年35期
相关硕士学位论文 前4条
1 赵小文;基于LabVIEW的柔性压力/温度传感器信号采集系统的设计及实验[D];合肥工业大学;2012年
2 杨丽丽;坐姿压力分布测量系统的设计[D];重庆大学;2008年
3 黄榕熙;牙齿压力分布测量系统研究[D];厦门大学;2007年
4 刘展;内骨架式一体化小腿假肢的三维有限元模型及参数分析[D];四川大学;2003年
,本文编号:2007921
本文链接:https://www.wllwen.com/linchuangyixuelunwen/2007921.html