当前位置:主页 > 医学论文 > 临床医学论文 >

基于稀疏表示和字典训练的微血管分割方法研究

发布时间:2018-08-01 08:33
【摘要】:微血管的状态信息与人体组织、器官代谢水平具有密切的关系,当微血管中血液流动的状态出现异常时,可以合理的推断出机体的某个部位发生了病变,因此,微血管信息具有重要的生理、病理、药理和临床意义。对微血管的识别研究也在各类疾病的早期诊断以及治疗方面起着不可小觑的作用。同时,随着计算机的高速发展,利用计算机来完成对数字图像信息的处理和分析工作已变得十分常见,通过计算机对微血管数字图像进行识别,不仅可以实现对生物体的零创伤,同时还可以加快数据的处理速度,提高了处理效率,减轻了科研人员的压力。因此,利用数字图像处理技术完成对微血管的识别研究,在生物科学、医学诊断等方面有着十分重要的意义。本文从微血管图像的特征以及图像分割两方面入手,首先研究了微血管图像的特征以及常见的图像分割方法,包括基于阈值分割,边缘检测,形态学运算以及区域生长四种方法,并实现了对金鱼尾部微血管的分割。其次,本文学习了稀疏表示和字典学习理论。稀疏表示理论的应用领域非常广泛,如图像压缩,图像去噪以及图像分割等,且都得到了较为优质的效果。因此本文在稀疏表示和字典学习理论的基础上,学习了基于稀疏聚类的图像分割方法,并建立了基于稀疏子空间聚类的图像分割模型。该模型运用Ncut法对图像划分出N个超像素,然后应用SAC算法计算每个超像素之间的相似性,并利用相似性矩阵求得系数矩阵A,运用系数矩阵A构造图像的邻接矩阵W,最后再次运用Ncut方法对超像素进行划分从而得到图像的分割结果。本文的最后以活体的非洲爪蛙作为实验材料通过一系列的实验完成了对微血管图像的采集,灰度变换,融合以及分割的处理。其中包括,运用灰度变换法将采集到的图像转换成灰度图像,方便后续计算机的进一步处理;运用像素点选小融合法对转换后的微血管灰度图像进行融合处理,将所采集到的不连续的微血管图像融合成一幅完整的微血管显微图像,从融合后的结果中可以清晰地看到一条连续的微血管脉络;运用基于块稀疏子空间聚类模型对图像进行分割处理,并将分割结果与前文提到的四种常用图像分割方法做比较,可以明显的看出,本文所使用的方法可以将微血管更加完整清晰的分割出来,分割效果更好。
[Abstract]:The state information of microvessels is closely related to the metabolism level of human tissues and organs. When the blood flow in the microvessels is abnormal, it can reasonably be inferred that there is a pathological change in a certain part of the body. Microvascular information has important physiological, pathological, pharmacological and clinical significance. The recognition of microvessels also plays an important role in the early diagnosis and treatment of various diseases. At the same time, with the rapid development of computer, it has become very common to use computer to process and analyze digital image information. It can not only achieve zero trauma to organism, but also speed up data processing, improve processing efficiency and lighten the pressure of researchers. Therefore, the recognition of microvessels by digital image processing technology is of great significance in biological science, medical diagnosis and so on. This paper starts with the features of microvascular image and image segmentation. Firstly, it studies the features of microvascular image and common image segmentation methods, including threshold segmentation, edge detection. Morphological operation and regional growth were used to segment the tail microvessels of goldfish. Secondly, this paper studies sparse representation and dictionary learning theory. Sparse representation theory is widely used in many fields, such as image compression, image denoising and image segmentation. Therefore, based on sparse representation and dictionary learning theory, this paper studies the image segmentation method based on sparse clustering, and establishes an image segmentation model based on sparse subspace clustering. The model uses the Ncut method to divide the image into N superpixels, and then uses the SAC algorithm to calculate the similarity between each superpixel. The coefficient matrix A is obtained by using the similarity matrix, and the adjacent matrix W is constructed by using the coefficient matrix A. finally, the image segmentation results are obtained by using Ncut method to partition the super-pixels. In the last part of this paper, a series of experiments were carried out to collect, transform, fuse and segment the microvascular image with the living African claw frog as the experimental material. Among them, the grayscale transform method is used to convert the collected image into gray image, which is convenient for the further processing of the subsequent computer; the image of microvascular grayscale after conversion is fused by the method of pixel selection and small fusion. The collected discontinuous microvascular images are fused into a complete microvascular image, and a continuous microvascular vein can be clearly seen from the fusion results. Using the block sparse subspace clustering model to segment the image, and comparing the segmentation results with the four commonly used image segmentation methods mentioned above, we can clearly see that, The method used in this paper can segment the microvessels more completely and clearly, and the segmentation effect is better.
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R445;TP391.41

【相似文献】

相关期刊论文 前4条

1 贾敏;王金甲;李静;洪文学;;基于辅助训练的半监督稀疏表示分类器用于脑电图分类[J];生物医学工程学杂志;2014年01期

2 杨亮;陆建峰;;一种基于稀疏表示的脑功能子网络构建方法[J];计算机应用研究;2014年09期

3 林溱;;基于稀疏表示的MRI研究简介[J];电子世界;2014年09期

4 ;[J];;年期

相关会议论文 前3条

1 何爱香;刘玉春;魏广芬;;基于稀疏表示的煤矸界面识别研究[A];虚拟运营与云计算——第十八届全国青年通信学术年会论文集(上册)[C];2013年

2 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年

3 葛凤翔;任岁玲;郭鑫;郭良浩;孙波;;微弱信号处理及其研究进展[A];中国声学学会水声学分会2013年全国水声学学术会议论文集[C];2013年

相关博士学位论文 前10条

1 李进明;基于稀疏表示的图像超分辨率重建方法研究[D];重庆大学;2015年

2 王亚宁;基于信号稀疏表示的电机故障诊断研究[D];河北工业大学;2014年

3 姚明海;视频异常事件检测与认证方法研究[D];东北师范大学;2015年

4 黄国华;蛋白质翻译后修饰位点与药物适应症预测方法研究[D];上海大学;2015年

5 王瑾;基于稀疏表示的数据收集、复原与压缩研究[D];北京工业大学;2015年

6 王文卿;基于融合框架与稀疏表示的遥感影像锐化[D];西安电子科技大学;2015年

7 解虎;高维小样本阵列自适应信号处理方法研究[D];西安电子科技大学;2015年

8 秦振涛;基于稀疏表示及字典学习遥感图像处理关键技术研究[D];成都理工大学;2015年

9 薛明;基于稀疏表示的在线目标跟踪研究[D];上海交通大学;2014年

10 孙乐;空谱联合先验的高光谱图像解混与分类方法[D];南京理工大学;2014年

相关硕士学位论文 前10条

1 吴丽璇;基于稀疏表示的微聚焦X射线图像去噪方法[D];华南理工大学;2015年

2 赵孝磊;基于图像分块稀疏表示的人脸识别算法研究[D];南京信息工程大学;2015年

3 黄志明;基于辨别式稀疏字典学习的视觉追踪算法研究[D];华南理工大学;2015年

4 张铃华;非约束环境下的稀疏表示人脸识别算法研究[D];南京信息工程大学;2015年

5 贺妍斐;基于稀疏表示与自适应倒易晶胞的遥感图像复原方法研究[D];南京信息工程大学;2015年

6 杨烁;电能质量扰动信号的稀疏表示/压缩采样研究[D];西南交通大学;2015年

7 应艳丽;基于低秩稀疏表示的目标跟踪算法研究[D];西南交通大学;2015年

8 梁晓捷;基于网络摄像头与稀疏表示分类法的实时人脸识别系统应用研究[D];五邑大学;2015年

9 张宏乐;语音信号稀疏表示方法研究[D];太原理工大学;2016年

10 郭欣;基于K-SVD稀疏表示的语音增强算法研究[D];太原理工大学;2016年



本文编号:2156992

资料下载
论文发表

本文链接:https://www.wllwen.com/linchuangyixuelunwen/2156992.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5479f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com