黑籽南瓜对枯萎病菌侵染的应答机制及NBS类抗病基因筛选

发布时间:2020-04-18 12:59
【摘要】:黑籽南瓜(Cucurbita ficifolia Bouche)是南瓜属一年或多年生瓜类作物,对瓜类枯萎病有较强抗性,已作为嫁接砧木有效控制了瓜类枯萎病的发生和危害。中国是全球瓜类生产大国,枯萎病是影响瓜类产量和品质的重要病害之一,为镰孢属尖孢镰刀菌(Fusarium oxysporum)寄生引起的一种真菌土传病害,在世界范围内的瓜类种植区普遍发生,一般使瓜类减产20%~60%,而培育抗病品种是防控该病最经济、最有效和环境友好的途径。有关瓜类对枯萎病菌侵染的免疫应答机制及瓜类-枯萎病菌互作的分子机制至今未完全阐明。利用高通量的测序技术,从转录组学和蛋白组学水平上研究黑籽南瓜应答枯萎病菌侵染的分子机制。一方面,可以较系统分析抗性基因和抗性蛋白的差异表达特性,有助于从整体水平上揭示黑籽南瓜应答枯萎病菌侵染的代谢通路、信号传导和分子调控网络,深入解析黑籽南瓜-枯萎病菌互作的分子机制,为阐明瓜类寄主响应枯萎病菌胁迫的抗性机制提供分子生物学基础信息。另一方面,可获得差异基因和差异蛋白表达谱的全景图,有利于筛选和鉴定起关键作用的抗病基因,为瓜类抗枯萎病基因工程育种提供可利用的基因资源。基于此,本研究从黑籽南瓜基因组中克隆NBS类抗病基因同源序列(RGAs),并分析不同抗性品种中NBS同源片段的表达差异,结合枯萎病症状的表现确定抗性基因表达丰度较高的取样时间。在此基础上,选取抗病材料,利用高通量RNA-Seq技术和iTRAQ技术,通过多点时序比较,构建黑籽南瓜应答枯萎病菌胁迫的差异基因和差异蛋白表达谱,分析黑籽南瓜应答枯萎病菌侵染的代谢通路和分子调控网络;锁定和鉴别黑籽南瓜NBS类关键抗病基因,构建NBS类基因的VIGS沉默载体进行基因功能的初步验证。获得的主要研究结果如下:1.设计NBS类抗病基因保守结构域的简并引物,从黑籽南瓜基因组中分离了8条RGAs,其中HQRGA2(GenBank ID:MG946756)包含NBS类抗病基因的4个保守模块:P-loop、Kinase-2、Kinase-3a和GLPL区,且具有NB-ARC(nucleotide-binding adaptor shared by APAF-1,R proteins and CED-4)结构,为CC-NBS-LRR类抗病基因序列。HQRGA2与部分抗病基因序列的核苷酸相似性达到87%~99%,与中国南瓜抗病蛋白基因SQRGA-13的氨基酸同源性较高,达到96.6%,与其余抗病基因同源性在16.6%~43.8%之间。Q-PCR分析显示3个黑籽南瓜品种中HQRGA2的表达均受枯萎病菌胁迫(Fusarium oxysporum f.sp.cucumerinum)的诱导,其中感病白皮品种呈多个升-降的表达趋势,中抗花皮品种呈多个降-升的趋势,抗病绿皮品种HQRGA2的表达水平增加迅速且持续能力强,呈增加-降低的表达特点。结合接种后枯萎病出现和发展特征,确定转录组和蛋白组测序取样时间为接种枯萎病菌后48h(无肉眼可见症状的潜伏期)和96h(病症扩展期)。2.以抗病绿皮品种为材料,采用伤根法加灌根法接种枯萎病菌,对接种后48h、96h和对照(伤根加无菌水灌根后48h)的黑籽南瓜叶片进行RNA-Seq高通量测序,用Trinity软件对Clean reads进行组装,组装获得的Unigene在NR、SWISSPROT、KOG、GO、KEGG数据库中比对得到注释结果,FPKM法计算Unigene表达量筛选差异表达基因并进行GO功能和Pathway富集分析,研究黑籽南瓜响应枯萎病病原菌侵染过程中同一时间点及不同时间点的差异基因表达变化,构建了黑籽南瓜应答枯萎病菌侵染的转录组表达谱。主要结果如下:(1)黑籽南瓜转录组测序经组装后共获得62,169条Unigene,N50为1,640bp,最长Unigene为15,877bp,最短Unigene为301bp,平均长度为1,160bp。将Unigene和NR、SWISSPROT、KOG、GO和KEGG数据库进行比对,共获得47,521条Unigene(76.44%)的生物信息学注释结果,其中11,676条Unigene(29.40%)能与甜瓜基因组比对上,11,674条Unigene(29.39%)能与黄瓜基因组比对上。另有14,648条Unigene(23.56%)未被注释到,推测该部分序列可能是新转录本,或者是黑籽南瓜区别于其他瓜类作物的特有基因。本研究构建的转录组数据库可为研究其他瓜类抗病机制的基因注释提供参考。(2)通过接种后不同时间点的基因表达量和差异表达基因分析,对差异基因进行功能注释和代谢通路富集,Q-PCR验证转录组测序结果较为可靠。结果显示:(1)受枯萎病菌侵染后,不同时间点被诱导的大多数Unigene的功能都是常见的,几乎涵盖了植物生长发育的各个方面。共有25,020条Unigene被富集到25个分子功能家族,其中4,437条Unigene被富集到仅一般功能预测(General function prediction only),是富集基因数最多的一类,其次2,744条Unigene富集到翻译后修饰(Posttranslational modification)、蛋白质周转(Protein turnover)和分子伴侣(Chaperones),2,368条Unigene富集到信号转导机制(Signal transduction mechanisms),而富集到次生代谢物的合成、运输及分解(Secondary metabolites biosynthesis,Transport and catabolism)与防御机制(Defense mechanisms)上的基因数分别是837条和228条。(2)枯萎病菌激活的黑籽南瓜差异表达基因随侵染时间的延长而增多。接种后48h和96h的差异表达基因分别为939和2,021个,且下调基因的数量大于上调基因,其中有大量转录因子和抗病R基因发生了上调或下调表达。并集分析显示有721个差异表达基因在2个时间点中共同差异表达,355个基因上调表达,366个基因下调表达;具有相同的表达趋势的有444个,238个持续上调表达,206个持续下调表达。(3)Pathway富集分析显示,接种后48h时差异表达基因参与了细胞程序性死亡(Necroptosis)、过氧化物酶体(Peroxisome)、硫胺素代谢(Thiamine metabolism)、淀粉和糖代谢(Starch and sucrose metabolism)、细胞凋亡(Apoptosis)、糖酵解/糖异生(Glycolysis/gluconeogenesis)、溶菌酶(Lysosome)、细胞色素P450代谢(Cytochrome P450 metabolism)、丙酮酸盐代谢(Pyruvate metabolism)、谷胱甘肽代谢(Glutathione metabolism)、抗坏血酸和醛酸盐代谢(Ascorbate and aldarate metabolism)、植物激素信号转导途径(Plant hormone signal transduction)等抗病相关代谢途径。接种后96h,除上述代谢途径外,还激活了P53信号、VEGF信号和TNF信号等抗病相关信号途径,枯萎病菌激发了黑籽南瓜体内多种抗病途径、差异表达基因涉及防御反应及信号转导等,显示黑籽南瓜应答枯萎病菌侵染的分子机制受到多基因网络系统的调控。3.在转录组学研究的基础上,以相同处理的材料,利用iTRAQ技术研究黑籽南瓜应答枯萎病菌侵染的差异蛋白表达谱。结果表明:(1)总共鉴定到的可信蛋白数量为1,907个,差异表达蛋白总数为567个,CK-VS-48h处理组的差异表达蛋白有113个,其中60个差异蛋白通过KEGG富集到55个代谢通路;CK-VS-96h处理组有329个,198个富集在82条通路;48h-VS-96h有125个。发现在差异表达蛋白中有4个未知功能蛋白,其中的1个上调蛋白CL11145contig1是gpi锚定的非特异性脂质转移蛋白,对于抵抗非生物胁迫具有重要作用。另一个上调蛋白CL9717contig1为未知蛋白。2个下调的未知蛋白CL29643contig1和CL4168contig1均为假定的Csa蛋白,功能有待研究。(2)对差异表达蛋白进行并集分析找到3个处理组中有13个共性差异蛋白,其中与抗性相关的是S-腺苷甲硫氨酸合成酶(SAM1和SAM2),推测SAM合成相关基因也在抗病过程中发挥了重要作用。差异基因和差异蛋白与KEGG通路之间的互作分析表明,接种后48h的基因和蛋白间的相互作用差异比96h大,上调表达的互作基因和蛋白数量比96h多。(3)差异表达基因与差异表达蛋白关联性分析表明,接种后48h和96h与转录组差异基因关联表达的差异蛋白分别有11个和39个;KEGG富集分析表明差异基因、差异蛋白和相关调节基因富集到20个代谢途径,主要参与了核糖体、苯丙素类生物合成、光合生物的碳固定、过氧化物酶体、乙醛酸盐和二羧酸盐代谢和糖酵解/糖异生、半乳糖代谢、丙氨酸、天冬氨酸和谷氨酸代谢以及植物激素信号传导等途径。研究结果为确定需深入研究的代谢通路及鉴定关键抗性蛋白提供依据。4.综合黑籽南瓜接种枯萎病菌后的转录组和蛋白组学中的pathway富集分析数据,提出了黑籽南瓜应答枯萎病菌侵染的抗病信号转导网络,初步明确了黑籽南瓜应答枯萎病菌侵染的分子调控和信号传导途径,为黑籽南瓜抗病基因的进一步挖掘奠定了基础。(1)受枯萎病菌侵染后,黑籽南瓜通过膜锚定的枯萎病菌受体蛋白识别真菌诱导子/PAMPs(病原体相关分子模式),诱导下游信号传导。(2)钙通道的激活和胞质钙的增加触发NADPH氧化酶的激活,导致H_2O_2的产生和活性氧(ROS)爆发。(3)黑籽南瓜去除根尖后,枯萎病菌快速入侵,病菌的效应因子/无毒基因(AVR)使黑籽南瓜相关基因作出误判,从而导致木质素合成降低、细胞间隙扩大、细胞壁降解、光合速率下降、蜡质合成下降等过程,植株的物理抗性并未发挥作用。(4)随着病原菌的增多,黑籽南瓜通过特定的病原体受体(PRRS)和NBS类抗病蛋白识别病菌效应因子,从而激活MAPK信号转导途径。(5)ABA途径在MYB和NAC等转录因子的参与下,通过提高丙酮酸盐、介导气孔关闭、减少蒸腾作用及细胞程序性死亡来防御病菌。(6)茉莉酸(JA)途径主要是通过茉莉酸甲酯的增加来促进相关转录因子或基因的表达,但其中的基因有上调或下调,预测细胞色素P450和细胞程序性死亡参与了后期的防御;(7)水杨酸(SA)途径作为主要的抗病信号转导途径,通过WRKY和BZIP转录因子激发了PR1蛋白的表达,从而开启系统性防御过程(SAR),调动硫胺素、溶菌酶、细胞程序性死亡,细胞凋亡、吞噬体等过程来清除病菌;(8)产生的ROS通过抗坏血酸-谷胱苷肽循环(ASA-GSH)循环来清除。(9)过氧化物酶体在抗病过程中通过CAT来调节和平衡ROS的产生。5.针对NBS-LRR类基因在黑籽南瓜抗病信号转导中的重要作用,本研究采用二代转录组Unigene和全长转录组Unigene结合方法对NBS类基因进行了鉴别和筛选。(1)以NB-ARC作为参考氨基酸序列,从黑籽南瓜CDS中鉴定了43条CfNBS(NBS-type gene from C.ficifolia)类基因序列,分属于TNL、CNL、TN、RPW8-N和N类六个亚基因家族,典型的TNL和CNL类分别有2个和13个。进化树分析表明,CfNBS类基因可以分为4大类群,黑籽南瓜的NBS类抗病基因数量较少但其基因分化比其它瓜类物种丰富。(2)与二代转录组进行比对,筛选获得11个差异表达的CfNBS类关键基因,显著富集在防卫反应、谷胱苷肽转运、受体丝氨酸/苏氨酸激酶结合等生物学过程和分子功能,富集通路最多的是与TMV抗性蛋白同源的2个基因(CL19588contig1和CL21402contig1),表明这2个基因在抗病过程中起到了重要的作用。接种枯萎病菌后的Q-PCR验证表明,有10个基因表达趋势同转录组数据变化趋势基本一致。组织表达特异性分析表明,在根、茎和果皮中表达量最高的基因分别是CL34065Contig1、CL52011Contig1和CL19588Contig1。6.从黑籽南瓜转录组数据库中获得了HQRGA2片段的全长基因,其Unigene编码为CL7398Contig1,经实体克隆测序该基因全长4,303bp,命名为CfRFN2(Gene Bank ID:MK618462),ORFfinder分析发现其有一个完整的编码框,长度4,092bp,编码1,363个氨基酸。(1)CfRFN2注释为拟南芥抗病蛋白At4g27190类转录突变体X1同源基因。CfRFN2与其他瓜类抗病基因核苷相似性在87%~98%之间,保守结构域分析该基因含有1个NB-ARC和2个LRR结构域;推导该基因的信号肽序列在19~20个氨基酸之间且不属于分泌蛋白;CfRFN2蛋白与美洲南瓜和中国南瓜的RPS2蛋白同源性亲缘关系最近。(2)从克隆载体pEASY-CfRFN2片段3中扩增415bp的CfRFN2基因片段,连接入VIGS载体pTRV2,构建完成VIGS沉默载体pTRV2-CfRFN2。以含有沉默载体和共转化载体pTRV1的农杆菌同时侵染黑籽南瓜幼苗,28d后以共侵染的植株接种枯萎病菌为处理,以野生型植株接种枯萎病菌为对照,接种7d后,处理植株较对照发病严重,Q-PCR分析显示处理植株中CfRFN2的相对表达量在接种后48h和96h比对照分别减低34.75%和98.27%,初步表明黑籽南瓜CfRFN2基因具有抗枯萎病的功能。
【图文】:

电泳图谱,黑籽南瓜,简并引物,基因组DNA


分析到的数据经内参基因均雨一化处理后,用2- Ct法达量, Ct = Ct目的片段-Ct内参基因, Ct = Ct处理组平均SPSS 19.0 统计软件对数据进行t测验,检验差异16作图。As 的克隆南瓜 DNA 为模板,利用所设计的引物(表 3-1)进F7 和 HZBB7 扩增到约 500 bp 的条带(图 3-1),带的回收,连接转化,,得到大量白斑菌落,随机测,在将 PCR 检测阳性的质粒进行不同的酶切组获得 50 个阳性重组子,随机选 20 个克隆进行测M 1 2 3 4 5 6 7 8 9 10bp

酶切图谱,重组子,酶切图谱,质粒


1 2 3 4 5 6 M 7 8 9 10 11 12 13 14 M 15 16 17 18 19图 3-2 阳性重组子用 Hind Ⅲ和 BamHⅠ酶切图谱M:DL2000marker;1-19:阳性重组子质粒 DNA 酶切Fig.3-2 The digestion products analysis using Hind Ⅲ and BamHⅠp→M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 M图 3-3 阳性重组子用 EcoRⅠ和 HindⅢ酶切图谱M:DL2000marker;1-18:阳性重组子质粒 DNA 酶切Fig.3-3 The digestion products analysis using EcoRⅠand HindⅢ
【学位授予单位】:西南大学
【学位级别】:博士
【学位授予年份】:2019
【分类号】:S436.429

【参考文献】

相关期刊论文 前10条

1 成晓静;周楚奇;周丽英;卜璐璐;洪健康;杨正安;;三种黑籽南瓜RAPD分析[J];北方园艺;2015年17期

2 乔永旭;;黄瓜和黑籽南瓜幼苗RBCs对低温胁迫的应答差异[J];中国农业大学学报;2015年04期

3 赵芹;谢大森;何晓明;罗少波;彭庆务;;基于NBS-LRR类R基因保守结构域克隆瓠瓜抗病基因同源序列[J];华南农业大学学报;2015年05期

4 乔永旭;;黄瓜和黑籽南瓜幼苗根系边缘细胞对肉桂酸胁迫的应答差异[J];园艺学报;2015年05期

5 乔永旭;张永平;高丽红;;根系边缘细胞对肉桂酸胁迫下黄瓜和黑籽南瓜活性氧代谢与根系活力的影响[J];中国农业科学;2015年08期

6 郝园园;江雪飞;;NaHS对NaHCO_3胁迫下黑籽南瓜及黄瓜种子生理指标的影响[J];福建农业;2015年03期

7 朱友银;王月;张弘;邵Y

本文编号:2632116


资料下载
论文发表

本文链接:https://www.wllwen.com/nykjlw/dzwbhlw/2632116.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3568b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com