Effectiveness of Plant-derived Essential Oils and Their Chem
发布时间:2022-02-13 04:13
植物精油因其具有趋避、抑制产卵、熏蒸及触杀活性而被广泛用于防治害虫。与常规化学农药比,它对非靶标害虫的低毒性也使得其成为替代化学农药进行防治害虫一种重要手段。本实验研究了提取自14种芳香、辛辣以及药用植物的植物精油及4种化合物单体在不同剂量下(1000、5000、2500、1000、100ppm)对温室、仓储和卫生害虫的生物活性(趋避、抑制产卵、熏蒸剂及触杀毒性)。结果表明植上述有生物活性的植物精油最适使用剂量为1OOOOppm。具体结果如下:1.植物精油对温室主要害虫的生物活性1.1对烟粉虱(Bemisiatabaci)的趋避及抑制产卵活性石菖蒲(Acorus tatarinowii)、百部(Stemona japonica)、栀子花 (Gardenia jasminoides)、肉豆蔻(Myristica fragrans)、独活(Heracleum hemsleyanum)、胡椒(Piper nigrum)、姜黄(Curcuma longa)、山鸡椒(Litsea cubeba)和花椒(Zanthoxylumbungeanum)精油对粉虱成虫具有熏蒸毒性。室内条件下,经过肉豆蔻处...
【文章来源】:华中农业大学湖北省211工程院校教育部直属院校
【文章页数】:151 页
【学位级别】:博士
【文章目录】:
ABSTRACT
摘要
1. CHAPTER 1: INTRODUCTION
1.1. Plant-based essential oils
1.2. Use of essential oils in pest control
1.3. Greenhouse Insect and Mite Pests
1.3.1. Greenhouse
1.3.2. Whiteflies
1.3.3. Aphids
1.3.4. Mites
1.3.5. Control strategies of greenhouse pests
1.3.6. Weakenesses of Control
1.4. Stored Grain Pests
1.4.1. Stored Grain
1.4.2. Biology of common insect pests of stored grain
1.4.3. Red flour beetle
1.4.4. Sawtoothed grain beetle
1.4.5. Maize weevil
1.4.6. Control strategies of stored grain pests
1.4.7. Weaknesses of control
1.5. Household Insect Pests
1.5.1. Househould pest
1.5.2. Common house hold insect pests
1.5.3. Pharaoh ant
1.5.4. German cockroach
1.5.5. Control of household pests
1.5.6. Weaknesses of control
1.6. Aims of the study
2. CHAPTER 2: MATERIALS AND METHOD
2.1. Plant materials
2.2. Ethanol-extracted essential oils
2.3. Prepration of working solution
2.4. Gas chromatography and mass spectrometry
2.5. Whitefly biotype determination through mtcoi gene identification
2.6. Host plants cultivation
2.6.1. Host plants for whitefly and mites
2.6.2. Host plants for Aphid
2.7. Insects
2.7.1. Culture of whitefly
2.7.2. Culture of Mites
2.7.3. Culture of Aphid
2.7.4. Culture of maize weevil
2.7.5. Culture of saw-toothed beetle
2.7.6. Culture of red flour beetle
2.7.7. Culture of ants
2.7.8. Culture of cockroaches
2.8. Bioassay
2.8.1. Laboratory experiments of green house pests
2.8.1.1. Whitefly Fumigant toxicity
2.8.1.2. Whitefly Contact toxicity
2.8.1.3. Contact toxicity against adult and nymph mites and whitefly nymphs
2.8.1.4. Whitefly repellency
2.8.1.5. Aphid repellency test in choice experiment
2.8.1.6. Aphid repellency test in no-choice method
2.8.2. Laboratory experiments of stored grain pests
2.8.2.1. Fumigation
2.8.2.1.1. Maize weevil larval and adult fumigant toxicity
2.8.2.1.2. Red flour beetle larval fumigant toxicity
2.8.2.1.3. Saw-toothed beetle larval and adult development following essential oil fumigation
2.8.2.2. Repellency
2.8.2.2.1. Maize weevil repellency
2.8.2.2.2. Saw-toothed grain beetles repellency test
2.8.2.2.3. Red flour beetle area preference test in petri dish
2.8.2.2.4. Red flour beetle repellency in H-type tube
2.8.2.3. Eggs hatching effects of red flour beetle
2.8.3. Laboratory experiment of House hold pests
2.8.3.1. Repellency
2.8.3.1.1. Ant repellency test
2.8.3.1.2. Cockroach repellency experiment
2.8.4. Greenhouse experiment
2.8.4.1. Whitefly adult contact toxicity
2.8.4.2. Contact toxicity against whitefly nymphs and adult and nymph mites
2.8.4.3. Whitefly adult repellency and anti-oviposition
2.8.4.4. Aphid repellency
2.8.5. Kitchen experiment
2.8.5.1. Cockroach repellency
2.9. Statistical analyses
3. CHAPTER 3: RESULTS
3.1. Greenhouse pests
3.1.1. Laboratory experiments
3.1.1.1. Fumigant toxicity to adult whitefly
3.1.1.1.1. M. fragrans
3.1.1.1.2. A. tatarinowii,S. japonica and H. hemsleyanum
3.1.1.1.3. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acid
3.1.1.2. Contact toxicity to whitefly
3.1.1.2.1. A. tatarinowii, H. hemsleyanum, and S. japonica toxicity to adults
3.1.1.2.2. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acidtoxicity to whitefly nymph
3.1.1.2.3. M. fragrans toxicity to whitefly nymph
3.1.1.3. Contact toxicity to mite
3.1.1.3.1. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acidtoxicity to adult mite
3.1.1.3.2. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acidtoxicity to mite nymphs
3.1.1.4. Whitefly repellency and oviposition deterrent
3.1.1.4.1. L.cubeba
3.1.1.4.2. P.nigrum
3.1.1.4.3. C.longa
3.1.1.4.4. Z. bungeanum
3.1.1.4.5. M. fragrans
3.1.1.4.6. A. tatarinowii, H. hemsleyanum and S. japonica
3.1.1.5. Aphid repellency
3.1.1.5.1. A. tatarinowii
3.1.1.5.2. S. japonica
3.1.1.5.3. M. haplocalyx
3.1.1.5.4. A. tatarinowii+S. japonica
3.1.1.5.5. Aphid repellency response of no-choice method
3.1.1.6. Aphid molting
3.1.1.6.1. Molting of A. glycines after feeding of plants applied with essential oils
3.1.2. Greenhouse experiment
3.1.2.1. Contact Toxicity
3.1.2.1.1. H. hemsleyanum, A. tatarinowii and S. japonica toxicity to whitefly adult
3.1.2.1.2. G. jasminoides, squalene, ethyl linoleate, n-hexadecanoic acid and 9-12-octadecadienoic acidtoxicity to whitefly nymph
3.1.2.1.3. G. jasminoides, squalene, ethyl linoleate, n-hexadecanoic acid and 9-12-octadecadienoic acidtoxicity to mite adult
3.1.2.1.4. G. jasminoides, squalene, ethyl linoleate, n-hexadecanoic acid and 9-12-octadecadienoic acid totoxicity to mite nymph
3.1.2.2. Whitefly repellency and oviposition deterrent
3.1.2.2.1. L.cubeba
3.1.2.2.2. P.nigrum
3.1.2.2.3. Z.bungeanum
3.1.2.2.4. C.longa
3.1.2.2.5. G.jasminoides, squalene, ethyl linoleate, n-hexadecanoic acid and 9-12-octadecadienoic acid
3.1.2.2.6. M.fi-agrans
3.1.2.2.7. A. tatarinowii, H. hemsleyanum and S. japonica
3.1.2.3. Aphid Repellency
3.1.2.3.1. A.tatarinowii, S. japonica, M. haplocalyx, and A. tatarinowii+S. japonica
3.2. Stored Grain pest
3.2.1. Fumigant toxicity
3.2.1.1. M. haplocalyx and A.ascalonicum fumigation to S. zeamais adult and nymph
3.2.1.2. M. piperita, C. atlantica and S. paniculatum fumigant effects to T. castaneum larva
3.2.1.3. C. camphora, P. nigrum and S. japonica effects on O. surinamensis larvae and adult development
3.2.2. Repellency experiment
3.2.2.1. M. haplocalyx and A.ascalonicum repellency to S.zeamais adult and nymph
3.2.2.2. C. camphora, P. nigrum and S. japonica repellency to O. surinamensis adults
3.2.2.3. H. hemsleyanum, M. haplocalyx and S.japonica repellency to T. castaneum
3.2.2.4. H. hemsleyanum, M. haplocalyx and S.japonica repellency duration to T. castaneum
3.2.2.5. M. piperita, C. atlantica and S. paniculatum repellency to T. castaneum
3.2.2.6. M. piperita, C. atlantica and S. paniculatum eggs hatching effects to T. castaneum
3.3. Household pest
3.3.1. Repellency to M. pharaonis
3.3.1.1. C. longa (Turmeric)
3.3.1.2. L. cubeba (Litsea)
3.3.1.3. Comparison between C. longa and L. cubeba
3.3.2. Repellency to cockroaches
3.3.2.1. Repellency in laboratory
3.3.2.2. Adult and nymph response in the kitchens experiments
3.4. Gas chromatography and mass spectrometry
4. CHAPTER 4: DISCUSSION
4.1. Greenhouse pests
4.1.1. Fumigant and contact toxicity to whitefly
4.1.1.1. M. fragrans toxicity to adult whitefly
4.1.1.2. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acidtoxicity to whitefly
4.1.1.3. A.tatarinowii, H. hemsleyanum, and S. japonica toxicity to adult whitefly
4.1.2. Contact toxicity to mite
4.1.2.1. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acidtoxicity to mite
4.1.3. Repellency and oviposition deterrnt to whitefly
4.1.3.1. L. cubeba
4.1.3.2. P. nigrum
4.1.3.3. C. longa
4.1.3.4. Z. bungeanum
4.1.3.5. M. fragrans
4.1.3.6. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acid
4.1.4. Repellency to Aphid
4.1.4.1. A. tatarinowii, S. japonica, M. haplocalyx and A. tatarinowii+S. japonica settling response toaphid using the choice and no-choice method in lab
4.1.4.2. A. tatarinowii, S. japonica, M. haplocalyx and A. tatarinowii+S. japonica settling response toaphid using the choice method in Greenhouse
4.2. Stored gain Pests
4.2.1. Fumigation
4.2.1.1. M. piperita, C. atlantica and S. paniculatum fumigant effects to T. castaneum larva
4.2.1.2. M. piperita, C. atlantica and S. paniculatum eggs hatching effects to T. castaneum
4.2.1.3. C. camphora, P. nigrum and S. japonica effects on larvae and adult development of O.surinamensis
4.2.1.4. M.haplocalyx and A.ascalonicum fumigation to S. zeamais adult and larvae
4.2.2. Repellency
4.2.2.1. H. hemsleyanum, M. haplocalyx and S.japonica repellency to T. castaneum
4.2.2.2. M.piperita, C. atlantica and S. paniculatum repellency to T. castaneum
4.2.2.3. C. camphora, P. nigrum and S. japonica repellency to O. surinamensis
4.2.2.4. M. haplocalyx and A.ascalonicum repellency to S. zeamais adult and larvae
4.3. Household pests
4.3.1. Repellency
4.3.1.1. Repellency to M. pharaonis
4.3.1.2. Repellency to cockroaches
4.4. Essential oil chemical constituents
5. CHAPTER 5: SUMMARY, CONCLUSION AND FUTURE PROSPECTS
5.1. Summary and Conclusion
5.2. Future Prospects
References
Publications
Acknowledgements
【参考文献】:
期刊论文
[1]57种南药植物粗提物对螺旋粉虱杀虫活性初步研究[J]. 王兰英,骆焱平,卢远倩,符悦冠. 植物保护. 2012(01)
[2]Larvicidal and repellent activity of medicinal plant extracts from Eastern Ghats of South India against malaria and filariasis vectors[J]. Chinnaperumal Kamaraj,Abdul Abdul Rahuman,Asokan Bagavan,Gandhi Elango,Abdul Abduz Zahir,Thirunavukkarasu Santhoshkumar. Asian Pacific Journal of Tropical Medicine. 2011(09)
[3]Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L[J]. Sarita Kumar,Naim Wahab,Radhika Warikoo. Asian Pacific Journal of Tropical Biomedicine. 2011(02)
[4]石菖蒲提取物及混配剂对水稻褐飞虱的控制研究[J]. 姚英娟,梁玉勇,王梁全,张伟,杨长举,林拥军,华红霞. 应用昆虫学报. 2011(02)
[5]Habitat influences on diversity of bacteria found on German cockroach in Beijing[J]. FU Xue1,2,YE Lefu1,2,GE Feng1,1.State Key Laboratory of Integrated Management of Pest Insects and Rodents,Institute of Zoology,Chinese Academy of Sciences,Beijing 100101,China.2.Graduate University of Chinese Academy of Sciences,Beijing 100080,China. Journal of Environmental Sciences. 2009(02)
[6]13种植物乙醇提取物对褐飞虱的生物活性研究[J]. 苏远萍,杨长举,华红霞,蔡万伦,林拥军. 中国农学通报. 2009(01)
[7]决明子胰蛋白酶抑制剂COTI对菜青虫生长抑制作用的研究[J]. 任炜,廖海,杜林方. 四川动物. 2007(03)
[8]大豆蚜Aphis glycines Matsumura的研究[J]. 王承纶,相连英,张广学,朱弘复. 昆虫学报. 1962(01)
本文编号:3622657
【文章来源】:华中农业大学湖北省211工程院校教育部直属院校
【文章页数】:151 页
【学位级别】:博士
【文章目录】:
ABSTRACT
摘要
1. CHAPTER 1: INTRODUCTION
1.1. Plant-based essential oils
1.2. Use of essential oils in pest control
1.3. Greenhouse Insect and Mite Pests
1.3.1. Greenhouse
1.3.2. Whiteflies
1.3.3. Aphids
1.3.4. Mites
1.3.5. Control strategies of greenhouse pests
1.3.6. Weakenesses of Control
1.4. Stored Grain Pests
1.4.1. Stored Grain
1.4.2. Biology of common insect pests of stored grain
1.4.3. Red flour beetle
1.4.4. Sawtoothed grain beetle
1.4.5. Maize weevil
1.4.6. Control strategies of stored grain pests
1.4.7. Weaknesses of control
1.5. Household Insect Pests
1.5.1. Househould pest
1.5.2. Common house hold insect pests
1.5.3. Pharaoh ant
1.5.4. German cockroach
1.5.5. Control of household pests
1.5.6. Weaknesses of control
1.6. Aims of the study
2. CHAPTER 2: MATERIALS AND METHOD
2.1. Plant materials
2.2. Ethanol-extracted essential oils
2.3. Prepration of working solution
2.4. Gas chromatography and mass spectrometry
2.5. Whitefly biotype determination through mtcoi gene identification
2.6. Host plants cultivation
2.6.1. Host plants for whitefly and mites
2.6.2. Host plants for Aphid
2.7. Insects
2.7.1. Culture of whitefly
2.7.2. Culture of Mites
2.7.3. Culture of Aphid
2.7.4. Culture of maize weevil
2.7.5. Culture of saw-toothed beetle
2.7.6. Culture of red flour beetle
2.7.7. Culture of ants
2.7.8. Culture of cockroaches
2.8. Bioassay
2.8.1. Laboratory experiments of green house pests
2.8.1.1. Whitefly Fumigant toxicity
2.8.1.2. Whitefly Contact toxicity
2.8.1.3. Contact toxicity against adult and nymph mites and whitefly nymphs
2.8.1.4. Whitefly repellency
2.8.1.5. Aphid repellency test in choice experiment
2.8.1.6. Aphid repellency test in no-choice method
2.8.2. Laboratory experiments of stored grain pests
2.8.2.1. Fumigation
2.8.2.1.1. Maize weevil larval and adult fumigant toxicity
2.8.2.1.2. Red flour beetle larval fumigant toxicity
2.8.2.1.3. Saw-toothed beetle larval and adult development following essential oil fumigation
2.8.2.2. Repellency
2.8.2.2.1. Maize weevil repellency
2.8.2.2.2. Saw-toothed grain beetles repellency test
2.8.2.2.3. Red flour beetle area preference test in petri dish
2.8.2.2.4. Red flour beetle repellency in H-type tube
2.8.2.3. Eggs hatching effects of red flour beetle
2.8.3. Laboratory experiment of House hold pests
2.8.3.1. Repellency
2.8.3.1.1. Ant repellency test
2.8.3.1.2. Cockroach repellency experiment
2.8.4. Greenhouse experiment
2.8.4.1. Whitefly adult contact toxicity
2.8.4.2. Contact toxicity against whitefly nymphs and adult and nymph mites
2.8.4.3. Whitefly adult repellency and anti-oviposition
2.8.4.4. Aphid repellency
2.8.5. Kitchen experiment
2.8.5.1. Cockroach repellency
2.9. Statistical analyses
3. CHAPTER 3: RESULTS
3.1. Greenhouse pests
3.1.1. Laboratory experiments
3.1.1.1. Fumigant toxicity to adult whitefly
3.1.1.1.1. M. fragrans
3.1.1.1.2. A. tatarinowii,S. japonica and H. hemsleyanum
3.1.1.1.3. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acid
3.1.1.2. Contact toxicity to whitefly
3.1.1.2.1. A. tatarinowii, H. hemsleyanum, and S. japonica toxicity to adults
3.1.1.2.2. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acidtoxicity to whitefly nymph
3.1.1.2.3. M. fragrans toxicity to whitefly nymph
3.1.1.3. Contact toxicity to mite
3.1.1.3.1. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acidtoxicity to adult mite
3.1.1.3.2. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acidtoxicity to mite nymphs
3.1.1.4. Whitefly repellency and oviposition deterrent
3.1.1.4.1. L.cubeba
3.1.1.4.2. P.nigrum
3.1.1.4.3. C.longa
3.1.1.4.4. Z. bungeanum
3.1.1.4.5. M. fragrans
3.1.1.4.6. A. tatarinowii, H. hemsleyanum and S. japonica
3.1.1.5. Aphid repellency
3.1.1.5.1. A. tatarinowii
3.1.1.5.2. S. japonica
3.1.1.5.3. M. haplocalyx
3.1.1.5.4. A. tatarinowii+S. japonica
3.1.1.5.5. Aphid repellency response of no-choice method
3.1.1.6. Aphid molting
3.1.1.6.1. Molting of A. glycines after feeding of plants applied with essential oils
3.1.2. Greenhouse experiment
3.1.2.1. Contact Toxicity
3.1.2.1.1. H. hemsleyanum, A. tatarinowii and S. japonica toxicity to whitefly adult
3.1.2.1.2. G. jasminoides, squalene, ethyl linoleate, n-hexadecanoic acid and 9-12-octadecadienoic acidtoxicity to whitefly nymph
3.1.2.1.3. G. jasminoides, squalene, ethyl linoleate, n-hexadecanoic acid and 9-12-octadecadienoic acidtoxicity to mite adult
3.1.2.1.4. G. jasminoides, squalene, ethyl linoleate, n-hexadecanoic acid and 9-12-octadecadienoic acid totoxicity to mite nymph
3.1.2.2. Whitefly repellency and oviposition deterrent
3.1.2.2.1. L.cubeba
3.1.2.2.2. P.nigrum
3.1.2.2.3. Z.bungeanum
3.1.2.2.4. C.longa
3.1.2.2.5. G.jasminoides, squalene, ethyl linoleate, n-hexadecanoic acid and 9-12-octadecadienoic acid
3.1.2.2.6. M.fi-agrans
3.1.2.2.7. A. tatarinowii, H. hemsleyanum and S. japonica
3.1.2.3. Aphid Repellency
3.1.2.3.1. A.tatarinowii, S. japonica, M. haplocalyx, and A. tatarinowii+S. japonica
3.2. Stored Grain pest
3.2.1. Fumigant toxicity
3.2.1.1. M. haplocalyx and A.ascalonicum fumigation to S. zeamais adult and nymph
3.2.1.2. M. piperita, C. atlantica and S. paniculatum fumigant effects to T. castaneum larva
3.2.1.3. C. camphora, P. nigrum and S. japonica effects on O. surinamensis larvae and adult development
3.2.2. Repellency experiment
3.2.2.1. M. haplocalyx and A.ascalonicum repellency to S.zeamais adult and nymph
3.2.2.2. C. camphora, P. nigrum and S. japonica repellency to O. surinamensis adults
3.2.2.3. H. hemsleyanum, M. haplocalyx and S.japonica repellency to T. castaneum
3.2.2.4. H. hemsleyanum, M. haplocalyx and S.japonica repellency duration to T. castaneum
3.2.2.5. M. piperita, C. atlantica and S. paniculatum repellency to T. castaneum
3.2.2.6. M. piperita, C. atlantica and S. paniculatum eggs hatching effects to T. castaneum
3.3. Household pest
3.3.1. Repellency to M. pharaonis
3.3.1.1. C. longa (Turmeric)
3.3.1.2. L. cubeba (Litsea)
3.3.1.3. Comparison between C. longa and L. cubeba
3.3.2. Repellency to cockroaches
3.3.2.1. Repellency in laboratory
3.3.2.2. Adult and nymph response in the kitchens experiments
3.4. Gas chromatography and mass spectrometry
4. CHAPTER 4: DISCUSSION
4.1. Greenhouse pests
4.1.1. Fumigant and contact toxicity to whitefly
4.1.1.1. M. fragrans toxicity to adult whitefly
4.1.1.2. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acidtoxicity to whitefly
4.1.1.3. A.tatarinowii, H. hemsleyanum, and S. japonica toxicity to adult whitefly
4.1.2. Contact toxicity to mite
4.1.2.1. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acidtoxicity to mite
4.1.3. Repellency and oviposition deterrnt to whitefly
4.1.3.1. L. cubeba
4.1.3.2. P. nigrum
4.1.3.3. C. longa
4.1.3.4. Z. bungeanum
4.1.3.5. M. fragrans
4.1.3.6. G. jasminoides, squalene, ethyl linoleate, 9-12-octadecadienoic acid and n-hexadecanoic acid
4.1.4. Repellency to Aphid
4.1.4.1. A. tatarinowii, S. japonica, M. haplocalyx and A. tatarinowii+S. japonica settling response toaphid using the choice and no-choice method in lab
4.1.4.2. A. tatarinowii, S. japonica, M. haplocalyx and A. tatarinowii+S. japonica settling response toaphid using the choice method in Greenhouse
4.2. Stored gain Pests
4.2.1. Fumigation
4.2.1.1. M. piperita, C. atlantica and S. paniculatum fumigant effects to T. castaneum larva
4.2.1.2. M. piperita, C. atlantica and S. paniculatum eggs hatching effects to T. castaneum
4.2.1.3. C. camphora, P. nigrum and S. japonica effects on larvae and adult development of O.surinamensis
4.2.1.4. M.haplocalyx and A.ascalonicum fumigation to S. zeamais adult and larvae
4.2.2. Repellency
4.2.2.1. H. hemsleyanum, M. haplocalyx and S.japonica repellency to T. castaneum
4.2.2.2. M.piperita, C. atlantica and S. paniculatum repellency to T. castaneum
4.2.2.3. C. camphora, P. nigrum and S. japonica repellency to O. surinamensis
4.2.2.4. M. haplocalyx and A.ascalonicum repellency to S. zeamais adult and larvae
4.3. Household pests
4.3.1. Repellency
4.3.1.1. Repellency to M. pharaonis
4.3.1.2. Repellency to cockroaches
4.4. Essential oil chemical constituents
5. CHAPTER 5: SUMMARY, CONCLUSION AND FUTURE PROSPECTS
5.1. Summary and Conclusion
5.2. Future Prospects
References
Publications
Acknowledgements
【参考文献】:
期刊论文
[1]57种南药植物粗提物对螺旋粉虱杀虫活性初步研究[J]. 王兰英,骆焱平,卢远倩,符悦冠. 植物保护. 2012(01)
[2]Larvicidal and repellent activity of medicinal plant extracts from Eastern Ghats of South India against malaria and filariasis vectors[J]. Chinnaperumal Kamaraj,Abdul Abdul Rahuman,Asokan Bagavan,Gandhi Elango,Abdul Abduz Zahir,Thirunavukkarasu Santhoshkumar. Asian Pacific Journal of Tropical Medicine. 2011(09)
[3]Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L[J]. Sarita Kumar,Naim Wahab,Radhika Warikoo. Asian Pacific Journal of Tropical Biomedicine. 2011(02)
[4]石菖蒲提取物及混配剂对水稻褐飞虱的控制研究[J]. 姚英娟,梁玉勇,王梁全,张伟,杨长举,林拥军,华红霞. 应用昆虫学报. 2011(02)
[5]Habitat influences on diversity of bacteria found on German cockroach in Beijing[J]. FU Xue1,2,YE Lefu1,2,GE Feng1,1.State Key Laboratory of Integrated Management of Pest Insects and Rodents,Institute of Zoology,Chinese Academy of Sciences,Beijing 100101,China.2.Graduate University of Chinese Academy of Sciences,Beijing 100080,China. Journal of Environmental Sciences. 2009(02)
[6]13种植物乙醇提取物对褐飞虱的生物活性研究[J]. 苏远萍,杨长举,华红霞,蔡万伦,林拥军. 中国农学通报. 2009(01)
[7]决明子胰蛋白酶抑制剂COTI对菜青虫生长抑制作用的研究[J]. 任炜,廖海,杜林方. 四川动物. 2007(03)
[8]大豆蚜Aphis glycines Matsumura的研究[J]. 王承纶,相连英,张广学,朱弘复. 昆虫学报. 1962(01)
本文编号:3622657
本文链接:https://www.wllwen.com/nykjlw/dzwbhlw/3622657.html
最近更新
教材专著