除草剂和盐胁迫对水稻和稗草生理生化和分子水平的比较分析研究
发布时间:2023-08-26 03:16
植物经常遭受多种生物或非生物逆境胁迫,如干旱、盐害、冷害、病虫害、除草剂、重金属和有毒的化学物质等。复合胁迫如盐害和除草剂已经被证实会诱导植物的各种应激反应,并通过不同的信号传导途径来互相影响。抗氧化防御系统、渗透调节物质、光合作用、激素互作和转录因子都是涉及植物逆境响应机制的主要代谢和传导途径。丁草胺是稻田中广泛应用的除草剂,而2,4-D也是在作物种植中常用的除草剂之一。在本文研究中,我们研究了在广泛应用的除草剂下水稻和稗草的反应,以及常用除草剂的应用与非生物胁迫(例如盐害)的交互作用。取得的主要研究结果如下:(1)丁草胺是在稻田中广泛使用的除草剂。然而,丁草胺容易对水稻产生药害。本章研究了不同浓度的丁草胺对浙粳88和秀水134的影响,发现高浓度的丁草胺处理显著抑制水稻生长、降低光合色素和叶绿素荧光含量、破坏叶绿体结构。对比秀水134,浙粳88积累了更多的丁草胺、ROS和更高的电解质渗透率,但同时也含有更高活性的脯氨酸、吡咯啉合成酶、氨基丁酸转氨酶来抵御丁草胺的毒害。比较来看,秀水134诱导抗氧化酶、GSH、可溶性糖、酚类物质来保护水稻。因此,两个品种对丁草胺的耐性可能和抗氧化酶的活...
【文章页数】:223 页
【学位级别】:博士
【文章目录】:
Acknowledgement
Abbreviations
Abstract
摘要
Chapter 1 General Introduction
1.1. Significance value of Oryza sativa L
1.2 Environmental stresses under field conditions
1.3 Objectives of the study
1.4 Overview of the whole study
Chapter 2 Review of literature
2.1 Consumption of herbicides in agriculture
2.2 Herbicide in the environment
2.3 Accumulation and distribution of herbicides after application
2.4 Adverse effects of herbicides on plants
2.5 Toxic effects of 2,4-D on crop plants
2.6 Toxic effects of 2,4-D on non-plant species
2.7 Toxic effects of 2,4-D on Aquatic plants
2.8 Advance formulations of 2,4-D and herbicide resistant crops
2.9 Plant stress responses and salinity
Chapter 3 Butachlor-induced ROS production and stress responsive gene regulations in rice
3.1. Introduction
3.2 Materials and methods
3.2.1 Plant material
3.2.2 Morphological parameters
3.2.3 Chlorophyll pigments and fluorescence
3.2.4 Determination of malondialdehyde and ROS contents
3.2.5 Histochemical staining and EL estimation
3.2.6 Butachlor quantification in rice tissues
3.2.7 Biochemical analysis
3.2.8 Determination of non-enzymatic antioxidants
3.2.9 Ultrastructural observations
3.2.10 Total RNA extraction, cDNA synthesis, and qRT-PCR assay
3.2.11 Statistical analyses
3.3 Results
3.3.1 Plant morphology
3.3.2 Herbicide accumulation
3.3.3 Chloroplast ultrastructure
3.3.4 Pigments concentration and chlorophyll fluorescence
3.3.5 Butachlor induces oxidative stress in rice plants
3.3.6 Analysis of antioxidant enzymes
3.3.7 Analysis of non-enzymatic antioxidants
3.3.8 Total soluble protein, sugar and proline contents
3.4 Discussion
3.5 Conclusions
Chapter 4 2,4-D and salinity differentially modulates stress responses in rice
4.0 Introduction
4.1 Materials and methods
4.1.1 Plant material
4.2 Materials and methods
4.2.1 Plant material
4.2.2 Morphological parameters
4.2.4 Determination of malondialdehyde and ROS
4.2.5 Electrolyte leakage estimation
4.2.6 Biochemical analysis
4.2.7 Determination of non-enzymatic antioxidants
4.2.8 Indole acetic acid (IAA) and abscisic acid (ABA) measurements
4.2.9 Ultrastructural observations
4.2.10 Total RNA extraction, cDNA synthesis, and qPCR assay
4.2.11 Statistical analysis
4.3. Results
4.3.1 Morphological parameters
4.3.2 Chlorophyll and fluorescence parameters
4.3.3 Oxidative stress production
4.3.4 Response of enzymatic and non- enzymatic antioxidants
4.3.5 Total soluble, proline and sugar contents
4.3.6 Elements uptake
4.3.7 Expression of Na+ and K+ transporter gene in rice cultivars
4.3.8 Crosstalk of IAA and ABA
4.3.9 Changes in the structure of the chloroplast and mitochondria
4.4. Discussion
4.5 Conclusion
Chapter 5 2,4-D attenuates salinity-induced toxicity in roots of rice cultivars
5.1 Introduction
5.2 Materials and methods
5.2.1 Plant material and experimental design
5.2.2 Morphological parameters
5.2.3 Determination of malondialdehyde and ROS
5.2.4 Histochemical staining and electrolyte leakage estimation
5.2.5 Biochemical analysis
5.2.6 Determination of non-enzymatic antioxidants
5.2.7 Visualization of callose and lignin
5.2.8 Determination of Na+9 K+ and lignin
5.2.9 RNA isolation, cDNA synthesis and qRT-PCR assay
5.2.10 Ultrastructural observations
5.2.11 Statistical analysis
5.3 Results
5.3.1 Effects of 2,4-D/salt on biomass production,K+ and Na+ accumulation
5.3.2 Effects of 2,4-D/salt on oxidative stress
5.3.3 Response of enzymatic antioxidants
5.3.4 Effects of 2,4-D/salt on glutathione-ascorbate cycle
5.3.5 Effects of 2,4-D/salt on gene expression
5.3.6 Gene expression of Na+ and K+ transporters genes
5.3.8 Root ultra-structure under individual and combined stress treatments
5.4 Discussion
5.4.1 Possible mechanisms of salt tolerance
5.5 Conclusion
Chapter 6 Salinity reduces 2,4-D efficacy in Echinochloa crusgalli
6.0 Introduction
6.1 Materials and methods
6.1.1 Plant material and experimental design
6.1.2 Morphological parameters
6.1.3 Measurements of PSII maximum quantum yield
6.1.4 Determination of malondialdehyde and RO
6.1.5 Histochemical staining and Electrolyte leakage estimation
6.1.6 Biochemical analysis
6.1.7 Determination of non-enzymatic antioxidants
6.1.8 Determination of Na+ and K+
6.1.9 Indole acetic acid (IAA), abscisic acid (ABA) measurement
6.1.10 Measurement of leaf relative water content
6.1.11 Ultrastructural observations
6.1.12 Statistical analysis
6.2 Results
6.2.1 Morphological parameters
6.2.2 Chlorophyll and Chlorophyll fluorescence parameters
6.2.3 Oxidative stress biomarkers
6.2.4 Antioxidant enzymes activities
6.2.5 Non-enzymatic antioxidant enzymes
6.2.6 Mineral contents (K+, Na+ and K+/Na+)
6.2.7 IAA and ABA interaction
6.2.8 Changes in the ultrastructure of the chloroplast and mitochondria
6.2.9 Principal component analysis
6.3 Discussion
6.4 Conclusion
Chapter 7 Transcriptomic analysis of rice cultivars under 2,4-D and saline stress conditions
7.1 Introduction
7.2 Materials and methods
7.2.1 Plant material and experimental design
7.2.2 RNA-Seq
7.2.3 Analysis of illumina sequencing results
7.3 Results
7.3.1 Sequencing output and assembly
7.3.2 Gene annotation and functional classification
7.3.3 Subcellular localization of DEGs in rice cultivars
7.3.4 The herbicide 2,4-D responsive P450 and Glutathione DEGs
7.3.5 Expression of DEGs involved in indole acetic acid synthesis and signaltransduction
7.3.6 Expression of DEGs involved in ethylene synthesis
7.3.7 Expression of DEGs involved in ABA synthesis and degradation
7.3.8 Expression of key salt-responsive DEGs in rice cultivars
7.3.9 Expression of DEGs involved in ABA synthesis genes
7.4 Discussion
7.5 Conclusion
Chapter 8
8.1 Major findings
8.2 Future perspectives
References
List of publications
本文编号:3843843
【文章页数】:223 页
【学位级别】:博士
【文章目录】:
Acknowledgement
Abbreviations
Abstract
摘要
Chapter 1 General Introduction
1.1. Significance value of Oryza sativa L
1.2 Environmental stresses under field conditions
1.3 Objectives of the study
1.4 Overview of the whole study
Chapter 2 Review of literature
2.1 Consumption of herbicides in agriculture
2.2 Herbicide in the environment
2.3 Accumulation and distribution of herbicides after application
2.4 Adverse effects of herbicides on plants
2.5 Toxic effects of 2,4-D on crop plants
2.6 Toxic effects of 2,4-D on non-plant species
2.7 Toxic effects of 2,4-D on Aquatic plants
2.8 Advance formulations of 2,4-D and herbicide resistant crops
2.9 Plant stress responses and salinity
Chapter 3 Butachlor-induced ROS production and stress responsive gene regulations in rice
3.1. Introduction
3.2 Materials and methods
3.2.1 Plant material
3.2.2 Morphological parameters
3.2.3 Chlorophyll pigments and fluorescence
3.2.4 Determination of malondialdehyde and ROS contents
3.2.5 Histochemical staining and EL estimation
3.2.6 Butachlor quantification in rice tissues
3.2.7 Biochemical analysis
3.2.8 Determination of non-enzymatic antioxidants
3.2.9 Ultrastructural observations
3.2.10 Total RNA extraction, cDNA synthesis, and qRT-PCR assay
3.2.11 Statistical analyses
3.3 Results
3.3.1 Plant morphology
3.3.2 Herbicide accumulation
3.3.3 Chloroplast ultrastructure
3.3.4 Pigments concentration and chlorophyll fluorescence
3.3.5 Butachlor induces oxidative stress in rice plants
3.3.6 Analysis of antioxidant enzymes
3.3.7 Analysis of non-enzymatic antioxidants
3.3.8 Total soluble protein, sugar and proline contents
3.4 Discussion
3.5 Conclusions
Chapter 4 2,4-D and salinity differentially modulates stress responses in rice
4.0 Introduction
4.1 Materials and methods
4.1.1 Plant material
4.2 Materials and methods
4.2.1 Plant material
4.2.2 Morphological parameters
4.2.4 Determination of malondialdehyde and ROS
4.2.5 Electrolyte leakage estimation
4.2.6 Biochemical analysis
4.2.7 Determination of non-enzymatic antioxidants
4.2.8 Indole acetic acid (IAA) and abscisic acid (ABA) measurements
4.2.9 Ultrastructural observations
4.2.10 Total RNA extraction, cDNA synthesis, and qPCR assay
4.2.11 Statistical analysis
4.3. Results
4.3.1 Morphological parameters
4.3.2 Chlorophyll and fluorescence parameters
4.3.3 Oxidative stress production
4.3.4 Response of enzymatic and non- enzymatic antioxidants
4.3.5 Total soluble, proline and sugar contents
4.3.6 Elements uptake
4.3.7 Expression of Na+ and K+ transporter gene in rice cultivars
4.3.8 Crosstalk of IAA and ABA
4.3.9 Changes in the structure of the chloroplast and mitochondria
4.4. Discussion
4.5 Conclusion
Chapter 5 2,4-D attenuates salinity-induced toxicity in roots of rice cultivars
5.1 Introduction
5.2 Materials and methods
5.2.1 Plant material and experimental design
5.2.2 Morphological parameters
5.2.3 Determination of malondialdehyde and ROS
5.2.4 Histochemical staining and electrolyte leakage estimation
5.2.5 Biochemical analysis
5.2.6 Determination of non-enzymatic antioxidants
5.2.7 Visualization of callose and lignin
5.2.8 Determination of Na+9 K+ and lignin
5.2.9 RNA isolation, cDNA synthesis and qRT-PCR assay
5.2.10 Ultrastructural observations
5.2.11 Statistical analysis
5.3 Results
5.3.1 Effects of 2,4-D/salt on biomass production,K+ and Na+ accumulation
5.3.2 Effects of 2,4-D/salt on oxidative stress
5.3.3 Response of enzymatic antioxidants
5.3.4 Effects of 2,4-D/salt on glutathione-ascorbate cycle
5.3.5 Effects of 2,4-D/salt on gene expression
5.3.6 Gene expression of Na+ and K+ transporters genes
5.3.8 Root ultra-structure under individual and combined stress treatments
5.4 Discussion
5.4.1 Possible mechanisms of salt tolerance
5.5 Conclusion
Chapter 6 Salinity reduces 2,4-D efficacy in Echinochloa crusgalli
6.0 Introduction
6.1 Materials and methods
6.1.1 Plant material and experimental design
6.1.2 Morphological parameters
6.1.3 Measurements of PSII maximum quantum yield
6.1.4 Determination of malondialdehyde and RO
6.1.5 Histochemical staining and Electrolyte leakage estimation
6.1.6 Biochemical analysis
6.1.7 Determination of non-enzymatic antioxidants
6.1.8 Determination of Na+ and K+
6.1.10 Measurement of leaf relative water content
6.1.11 Ultrastructural observations
6.1.12 Statistical analysis
6.2 Results
6.2.1 Morphological parameters
6.2.2 Chlorophyll and Chlorophyll fluorescence parameters
6.2.3 Oxidative stress biomarkers
6.2.4 Antioxidant enzymes activities
6.2.5 Non-enzymatic antioxidant enzymes
6.2.6 Mineral contents (K+, Na+ and K+/Na+)
6.2.7 IAA and ABA interaction
6.2.8 Changes in the ultrastructure of the chloroplast and mitochondria
6.2.9 Principal component analysis
6.3 Discussion
6.4 Conclusion
Chapter 7 Transcriptomic analysis of rice cultivars under 2,4-D and saline stress conditions
7.1 Introduction
7.2 Materials and methods
7.2.1 Plant material and experimental design
7.2.2 RNA-Seq
7.2.3 Analysis of illumina sequencing results
7.3 Results
7.3.1 Sequencing output and assembly
7.3.2 Gene annotation and functional classification
7.3.3 Subcellular localization of DEGs in rice cultivars
7.3.4 The herbicide 2,4-D responsive P450 and Glutathione DEGs
7.3.5 Expression of DEGs involved in indole acetic acid synthesis and signaltransduction
7.3.6 Expression of DEGs involved in ethylene synthesis
7.3.7 Expression of DEGs involved in ABA synthesis and degradation
7.3.8 Expression of key salt-responsive DEGs in rice cultivars
7.3.9 Expression of DEGs involved in ABA synthesis genes
7.4 Discussion
7.5 Conclusion
Chapter 8
8.1 Major findings
8.2 Future perspectives
References
List of publications
本文编号:3843843
本文链接:https://www.wllwen.com/nykjlw/dzwbhlw/3843843.html
最近更新
教材专著