基于卷积神经网络的玉米病害小样本识别研究
发布时间:2023-10-22 11:55
农作物病害治理对于农作物的产量和品质有着非常重要的影响。本文针对玉米病害人工识别困难、识别过程耗费大量的人力成本和病害数据样本小且分布不均的问题,提出了一种改进的迁移学习神经网络(Neural Network)的病害识别方法。首先,采用旋转、翻转等方法对样本图像集进行数据增强;其次,通过迁移的MobileNetV2模型在玉米病害图像数据集上训练,利用Focal Loss函数改进神经网络的损失函数;最后,通过Softmax分类方法实现玉米病害图像识别。另外通过试验对比AlexNet、GooleNet、Vgg16、RestNet34、MobileNetV2和迁移的MobileNetV2这6种模型的训练集准确率、验证集准确率、权重、参数数量和运行时间。结果显示,6种模型验证集的准确率分别为93.88%、95.48%、91.69%、97.67%、96.21%和97.23%,迁移的MobileNetV2的准确率最高,且权重仅有8.69MB。进一步通过混淆矩阵对比了MobileNetV2和迁移的MobileNetV2两种模型,迁移的MobileNetV2模型识别正确率提升1.02%,训练速度减少6...
【文章页数】:8 页
本文编号:3856468
【文章页数】:8 页
本文编号:3856468
本文链接:https://www.wllwen.com/nykjlw/dzwbhlw/3856468.html
最近更新
教材专著