基于图像识别的有害生物检疫鉴定探索研究

发布时间:2024-05-11 16:42
  外来有害生物的鉴定一直是口岸检疫工作的重点,而对品种繁多的有害生物在种属层级进行准确识别则是检验检疫工作的难点,最新的计算机图像识别技术提供了解决这一问题的一种可行的途径。本文利用深度卷积网络的层次分类模型,对进口木材中经常截获的70种典型物种共9 681张图片在科,属,种这3个分类层级上进行了识别鉴定,在1 936张图片的测试中,模型在科,属,种上对70类有害生物的平均识别精度分别为97.71%,95.85%和86.92%。实验结果证明了模型对生物图像的学习能力,以及利用生物图像识别口岸有害生物的可行性。

【文章页数】:4 页

【文章目录】:
1 材料与方法
    1.1 实验材料
    1.2 方法
        1.2.1 模型设置
        1.2.2 模型训练
2 结果与分析
3 讨论



本文编号:3970131

资料下载
论文发表

本文链接:https://www.wllwen.com/nykjlw/dzwbhlw/3970131.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户81776***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com