高温抑制菊花腋芽生长的机制研究
发布时间:2021-03-31 08:30
切花菊是我国主要切花和优势出口花卉之一,’神马’是目前主栽的单头切花菊品种,然而,’神马’品种侧芽发生严重,为控制侧芽发育而获得只有顶芽主花蕾发育的单头切花菊,生产上采取人工来摘除侧芽侧蕾,一方面极大的增加了劳动力成本,另一方面如果摘除不及时或不恰当的操作还会影响切花质量,制约着切花菊的高效生产,因此,亟待开发有效的分枝调控技术、培育无侧枝切花菊新品种,而解析菊花侧枝生长发育调控机制是开展这些工作的基础。已有研究表明,温度是影响植物分枝的一个重要环境因素,然而,高温如何影响植物分枝及其详细机制并不清楚。基于此,本研究以单头切花菊’神马’为研究材料,探讨了高温(35℃)对’神马’全株不同部位腋芽生长的影响及其生理生化水平变化规律,借助转录组测序技术采用基因共表达网络分析策略挖掘了与腋芽生长性状相关的核心基因模块,最终从表型、生理生化及基因表达水平解析了高温(35℃)对菊花’神马’腋芽生长发育的影响机制,取得以下主要研究结果:1.高温抑制菊花腋芽生长。在高温处理条件下,上部腋芽并不萌发释放,基部腋芽生长也受到显著抑制(高温处理11d基部腋芽长度为0.3687 mm,对照为3.5387 mm...
【文章来源】:北京林业大学北京市 211工程院校 教育部直属院校
【文章页数】:137 页
【学位级别】:博士
【文章目录】:
摘要
ABSTRACT
1. Introduction
1.1. Background and significance
1.2. Research status and analysis
2. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novelmolecular signatures associated with axillary bud outgrowth in Chrysanthemum morifolium 'Jinba'
2.1. Abstract
2.2. Introduction
2.3. Material and methods
2.3.1. Plant material and growth conditions
2.3.2. Sampling procedure
2.3.3. Morphological Parameters
2.3.4. Gas exchange and photosynthetic pigments
2.3.5. Physiological indices
2.3.6. Stomatal Density
2.3.7. Microscopic documentation of axillary buds under different temperature regimes Paraffin sectioning
2.3.8. Transmission electron microscopy
2.3.9. Measurement of Sucrose concentration
2.3.10. RNA-seq library preparation and sequencing
2.3.11. Gene ontology and pathway enrichment analysis
2.3.12. Weighted genes coexpression network analysis
2.4. Results
2.4.1. Morphological indicators of high temperature
2.4.2 Temperature indirectly affects bud kinetics via leaf
2.4.3. Gas exchange and photosynthetic pigments
2.4.4. Physiological responses of leaf against temperature
2.4.5. Ultra-structural leaf and bud attributes as influenced by temperature variation
2.4.6. Temperature causes differential bud outgrowth and sugar distribution along bud positions
2.4.7. Transcriptome analysis of buds at different positions
2.4.8. Transcriptomic comparison revealed dynamic relationships among bud stages
2.4.9. Differential gene expression during bud outgrowth
2.4.10. Differentially expressed gene sets between 25 oC and 35 oC at different bud positions
2.4.11. Hormonal networks are also involved in temperature sensing for bud kinetics
2.4.12. Identification of coexpressed gene modules for selected morphological leaf and bud traits
2.4.13. qRT-PCR of candidate hormonal and molecular regulators of bud outgrowth supports the transcriptomic analysis.
2.5. Discussion
3. Tertiary axillary buds in secondary decapitation do clearly mind the change in temperature
3.1. Abstract
3.2. Introduction
3.3. Materials and Methods
3.3.1. Plant material and growth conditions
3.3.2. Experimental Plan
3.3.3. Microscopic documentation of axillary buds under different temperature regimes
3.4. Results
3.4.1. Suitably normal temperature gives more axillary bud outgrowth
3.4.2. High temperature positively regulates DgBRCl and CmDRMl expression
3.4.3. Elevated temperature promotes auxin transport gene DgPIN1 expression and suppresses auxinsignalling gene CmAXR1 expression
3.4.4. Normal temperature promotes cytokinin synthesis gene DgIPT3 expression in buds
3.4.5. Increase in temperature promotes strigolactone biosynthesis and signalling
3.4.6. ABA signaling in buds was stimulated by high temperature
3.4.7. Temperature plays a complex role in sucrose transport and accumulation in the axillary buds
3.4.8. Temperature differences modify leaf and bud characteristics for secondary shoots
3.5. Discussion
3.5.1. Temperature makes a complex sucrose homeostasis
3.5.2. High temperature excites branching inhibitors
3.5.3. Temperature makes a way to arrest bud burst through hormonal network
3.6. Conclusions
4. Sucrose modulates bud outgrowth status by integrating with key hormonal regulatory network inChrysanthemum morifolium 'Jinba'
4.1. Abstract
4.2. Introduction
4.3. Materials and Methods
4.3.1. Plant material and growth conditions
4.3.2. Physiological indices
4.3.3. Microscopic documentation of axillary buds under the three sucrose levels
4.3.4. The split-plate experiment
4.3.5. Quantification of gene expression
4.3.6. Cytokinin content analysis
4.4. Results
4.4.1. Suitable sucrose concentrations promote bud outgrowth
4.4.2. Relative sucrose concentrations behave differently in bud control
4.4.3. Strange morphological appearances of axillary buds in plants under higher sucrose concentrations
4.4.4. Higher sucrose concentrations trigger abnormal growth patterns of buds
4.4.5. Sucrose influences the leaf shape and color
4.4.6. Design of RNA-seq experiments and transcriptomic changes induced by sucrose
4.4.7. Weighted co-expression network construction and key modules identification
4.4.8. Sucrose negatively regulates DgBRC1 and CmDRM1 expression
4.4.9. Sucrose promotes auxin transport gene DgPIN1 expression and suppresses auxin signalling geneCmAXR1 expression
4.4.10. Sucrose promotes cytokinin synthesis gene DgIPT3 expression in buds
4.4.11. Sucrose promotes strigolactone biosynthesis gene expression and suppresses strigolactone signallinggene DgMAX2expression
4.4.12. ABA signaling in buds was repressed by sucrose treatment
4.4.13. Sucrose promotes Cytokinin accumulation in the bud
4.5. Discussion
4.5.1. Sucrose regulates bud growth status
4.5.2. Sucrose integrates with key hormonal mechanism to regulate bud release and outgrowth
4.6. Conclusions
5. Conclusions and perspective
6. The characteristics and innovations of the research
References
Personal CV
导师简介
Achievements
Acknowledgement
【参考文献】:
期刊论文
[1]Current perspectives on shoot branching regulation[J]. Cunquan YUAN,Lin XI,Yaping KOU,Yu ZHAO,Liangjun ZHAO. Frontiers of Agricultural Science and Engineering. 2015(01)
本文编号:3111131
【文章来源】:北京林业大学北京市 211工程院校 教育部直属院校
【文章页数】:137 页
【学位级别】:博士
【文章目录】:
摘要
ABSTRACT
1. Introduction
1.1. Background and significance
1.2. Research status and analysis
2. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novelmolecular signatures associated with axillary bud outgrowth in Chrysanthemum morifolium 'Jinba'
2.1. Abstract
2.2. Introduction
2.3. Material and methods
2.3.1. Plant material and growth conditions
2.3.2. Sampling procedure
2.3.3. Morphological Parameters
2.3.4. Gas exchange and photosynthetic pigments
2.3.5. Physiological indices
2.3.6. Stomatal Density
2.3.7. Microscopic documentation of axillary buds under different temperature regimes Paraffin sectioning
2.3.8. Transmission electron microscopy
2.3.9. Measurement of Sucrose concentration
2.3.10. RNA-seq library preparation and sequencing
2.3.11. Gene ontology and pathway enrichment analysis
2.3.12. Weighted genes coexpression network analysis
2.4. Results
2.4.1. Morphological indicators of high temperature
2.4.2 Temperature indirectly affects bud kinetics via leaf
2.4.3. Gas exchange and photosynthetic pigments
2.4.4. Physiological responses of leaf against temperature
2.4.5. Ultra-structural leaf and bud attributes as influenced by temperature variation
2.4.6. Temperature causes differential bud outgrowth and sugar distribution along bud positions
2.4.7. Transcriptome analysis of buds at different positions
2.4.8. Transcriptomic comparison revealed dynamic relationships among bud stages
2.4.9. Differential gene expression during bud outgrowth
2.4.10. Differentially expressed gene sets between 25 oC and 35 oC at different bud positions
2.4.11. Hormonal networks are also involved in temperature sensing for bud kinetics
2.4.12. Identification of coexpressed gene modules for selected morphological leaf and bud traits
2.4.13. qRT-PCR of candidate hormonal and molecular regulators of bud outgrowth supports the transcriptomic analysis.
2.5. Discussion
3. Tertiary axillary buds in secondary decapitation do clearly mind the change in temperature
3.1. Abstract
3.2. Introduction
3.3. Materials and Methods
3.3.1. Plant material and growth conditions
3.3.2. Experimental Plan
3.3.3. Microscopic documentation of axillary buds under different temperature regimes
3.4. Results
3.4.1. Suitably normal temperature gives more axillary bud outgrowth
3.4.2. High temperature positively regulates DgBRCl and CmDRMl expression
3.4.3. Elevated temperature promotes auxin transport gene DgPIN1 expression and suppresses auxinsignalling gene CmAXR1 expression
3.4.4. Normal temperature promotes cytokinin synthesis gene DgIPT3 expression in buds
3.4.5. Increase in temperature promotes strigolactone biosynthesis and signalling
3.4.6. ABA signaling in buds was stimulated by high temperature
3.4.7. Temperature plays a complex role in sucrose transport and accumulation in the axillary buds
3.4.8. Temperature differences modify leaf and bud characteristics for secondary shoots
3.5. Discussion
3.5.1. Temperature makes a complex sucrose homeostasis
3.5.2. High temperature excites branching inhibitors
3.5.3. Temperature makes a way to arrest bud burst through hormonal network
3.6. Conclusions
4. Sucrose modulates bud outgrowth status by integrating with key hormonal regulatory network inChrysanthemum morifolium 'Jinba'
4.1. Abstract
4.2. Introduction
4.3. Materials and Methods
4.3.1. Plant material and growth conditions
4.3.2. Physiological indices
4.3.3. Microscopic documentation of axillary buds under the three sucrose levels
4.3.4. The split-plate experiment
4.3.5. Quantification of gene expression
4.3.6. Cytokinin content analysis
4.4. Results
4.4.1. Suitable sucrose concentrations promote bud outgrowth
4.4.2. Relative sucrose concentrations behave differently in bud control
4.4.3. Strange morphological appearances of axillary buds in plants under higher sucrose concentrations
4.4.4. Higher sucrose concentrations trigger abnormal growth patterns of buds
4.4.5. Sucrose influences the leaf shape and color
4.4.6. Design of RNA-seq experiments and transcriptomic changes induced by sucrose
4.4.7. Weighted co-expression network construction and key modules identification
4.4.8. Sucrose negatively regulates DgBRC1 and CmDRM1 expression
4.4.9. Sucrose promotes auxin transport gene DgPIN1 expression and suppresses auxin signalling geneCmAXR1 expression
4.4.10. Sucrose promotes cytokinin synthesis gene DgIPT3 expression in buds
4.4.11. Sucrose promotes strigolactone biosynthesis gene expression and suppresses strigolactone signallinggene DgMAX2expression
4.4.12. ABA signaling in buds was repressed by sucrose treatment
4.4.13. Sucrose promotes Cytokinin accumulation in the bud
4.5. Discussion
4.5.1. Sucrose regulates bud growth status
4.5.2. Sucrose integrates with key hormonal mechanism to regulate bud release and outgrowth
4.6. Conclusions
5. Conclusions and perspective
6. The characteristics and innovations of the research
References
Personal CV
导师简介
Achievements
Acknowledgement
【参考文献】:
期刊论文
[1]Current perspectives on shoot branching regulation[J]. Cunquan YUAN,Lin XI,Yaping KOU,Yu ZHAO,Liangjun ZHAO. Frontiers of Agricultural Science and Engineering. 2015(01)
本文编号:3111131
本文链接:https://www.wllwen.com/nykjlw/yylw/3111131.html