Effective Iridium Utilization on Combining with Non-noble Tr
发布时间:2020-12-20 03:30
当今实现高速工业化的环保环境对当代人来说是一个严峻挑战。为了应对快速增长的人口的能源需求,传统资源被过渡利用,这些资源,如化石燃料,经燃烧后释放有害污染物到空气中。由此产生的污染空气进入大气,造成有害颗粒物和温室气体,并对居民造成严重的不利健康影响。因此,为了避免环境污染,需要努力减少对化石燃料的依赖并提高可再生能源的能量利用。从可再生能源中获取能源主要集中在氢能源领域。氢能源是可持续能源,以环境友好方式提供未来的能源供应和储存需求。具有通过水电解槽和燃料电池分别应对可再生能源的低能量和高能量发电期的能力。不幸的是,电解氢的产生受到阳极上缓慢的析氧反应(OER)的抑制,析氧反应是产生H2燃料的关键半反应。OER是一种复杂的过程,电解水过程中,每释放一个O2分子,则伴随失去四个电子,这需要比标准析氧反应电位(V=1.23v)高得多的电位。由于这种多余的能量在电化学过程中被消耗,同时也影响了可再生能源技术的广泛应用。目前,铱基氧化物,尤其是IrO2,是唯一能够承受电催化制氢中苛刻酸性环境的材料。不幸的是,铱是非常珍贵的稀有元素;因此,如何有效利用铱仍然是一项挑战,因为它基本上降低了对化石燃...
【文章来源】:华东理工大学上海市 211工程院校 教育部直属院校
【文章页数】:127 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
Chapter Ⅰ Introduction
1.1 Pollution from Burning of Fossil Fuels
1.2 Energy from Renewables
1.3 PEMWE's and Associated Challenges
1.4 Effective utilization of iridium
2"> 1.4.1 Doping IrO2
1.4.1.1 Ru based binary and ternary composites of rutile IrO2
1.4.1.2 Sn based binary and ternary composites of rutile IrO2
1.4.1.3 Doping of non-noble transition elements into IrO2
1.4.2 Iridium incorporation into different structures
1.4.2.1 Iridium in Pyrochlores
1.4.2.2 Iridium incorporation in Perovskites
1.4.3 Iridium based Mixed Oxides
2 based core-shell nanoparticles"> 1.4.3.1 IrO2 based core-shell nanoparticles
1.5 Innovations in current study
Chapter Ⅱ Experimental materials, methods, principles and characterization
2.1 Experimental materials and Synthesis methods
2.1.1 Chemical reagents, materials and instruments
2.1.2 Electrochemical characterization of electrodes
2.2 Methods and principles of electrochemical characterization
2.2.1 Reference Electrode Calibration
2.2.2 Test of solution resistance
2.2.3 Butler-Volmer (b-v) Equation of Electrode Dynamics
2.2.4 Cyclic voltammetry test
2.3 Physical characterization
2.3.1 X-Ray Powder Diffraction (XRD)
2.3.2 Scanning and Transmission electron microscopy(SEM &TEM)
2.3.3 Photoelectron spectroscopy (XPS)
2.3.4 Energy Dissipation Spectrum (EDS) and Inductively Coupled Plasma EmissionSpectroscopy (ICP-AES)
2.3.5 Specific Surface Area (BET)
2.3.6 X-ray fine structure spectrum (XAFS)
2 catalyst">Chapter Ⅲ Study on OER activity and structure of codoped IrO2 catalyst
3.1 Introduction
2 "> 3.2 Synthesis of codoped IrO2
3.3 Theoretical Calculation
3.4 Results and Discussion
2 "> 3.4.1 Composition, structure and morphological analysis of codoped IrO2
3.4.2 Computational Insight for codoped IrO2
3.4.3 Electrochemical Properties of codoped IrO2
3.4.4 XPS and XAS characterizations
3.5 Summary
Chapter Ⅳ Iridium Substitution in Nickel Cobaltite
4.1 Introduction
x NiCo2xOδ"> 4.2 Synthesis of IrxNiCo2xOδ
4.3 Results and Discussion
Ⅲ EXAFS"> 4.3.1 Structural characterization using XRD,TEM and Ir-LⅢ EXAFS
4.3.2 Electrocatalytic Activity and Durability
111 -edge XANES and XPS study"> 4.3.3 Electronic characterization of Iridium sites by Ir L111-edge XANES and XPS study
4.4 Summary
2 on 1-D Co3O4 Nano-rods as Mixed Oxides">Chapter Ⅴ Anchoring of IrO2 on 1-D Co3O4 Nano-rods as Mixed Oxides
5.1 Introduction
5.2 Material Synthesis
3 O4 nanorods"> 5.2.1 Synthesis of Co3O4 nanorods
2 decorated Co3O4 nanorods"> 5.2.2 Synthesis of IrO2 decorated Co3O4 nanorods
2 nanoparticles"> 5.2.3 Synthesis of IrO2 nanoparticles
5.3 Results and Discussion
5.3.1 XRD and EDS of Synthesized Composites
5.3.2 Morphological Analysis of Composites
5.3.3 OER Catalytic Evaluation of Composites
5.3.4 One Dimensional Importance of Substrate Material
5.3.5 XPS Analysis of Synthesized Composites
5.4 Summary
Chapter Ⅵ Conclusion and Future Stance
6.1 Schematic Conclusion
6.2 Prospect
References
Published Work during PhD
Acknowledgement
本文编号:2927126
【文章来源】:华东理工大学上海市 211工程院校 教育部直属院校
【文章页数】:127 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
Chapter Ⅰ Introduction
1.1 Pollution from Burning of Fossil Fuels
1.2 Energy from Renewables
1.3 PEMWE's and Associated Challenges
1.4 Effective utilization of iridium
2"> 1.4.1 Doping IrO2
1.4.2.1 Iridium in Pyrochlores
1.4.2.2 Iridium incorporation in Perovskites
1.4.3 Iridium based Mixed Oxides
2
1.5 Innovations in current study
Chapter Ⅱ Experimental materials, methods, principles and characterization
2.1 Experimental materials and Synthesis methods
2.1.1 Chemical reagents, materials and instruments
2.1.2 Electrochemical characterization of electrodes
2.2 Methods and principles of electrochemical characterization
2.2.1 Reference Electrode Calibration
2.2.2 Test of solution resistance
2.2.3 Butler-Volmer (b-v) Equation of Electrode Dynamics
2.2.4 Cyclic voltammetry test
2.3 Physical characterization
2.3.1 X-Ray Powder Diffraction (XRD)
2.3.2 Scanning and Transmission electron microscopy(SEM &TEM)
2.3.3 Photoelectron spectroscopy (XPS)
2.3.4 Energy Dissipation Spectrum (EDS) and Inductively Coupled Plasma EmissionSpectroscopy (ICP-AES)
2.3.5 Specific Surface Area (BET)
2.3.6 X-ray fine structure spectrum (XAFS)
2
3.1 Introduction
2
3.4 Results and Discussion
2
3.5 Summary
Chapter Ⅳ Iridium Substitution in Nickel Cobaltite
4.1 Introduction
x
Ⅲ
4.3.2 Electrocatalytic Activity and Durability
111
4.4 Summary
2
5.1 Introduction
5.2 Material Synthesis
3
2 decorated Co3O4 nanorods"> 5.2.2 Synthesis of IrO2 decorated Co3O4 nanorods
2 nanoparticles"> 5.2.3 Synthesis of IrO2 nanoparticles
5.3 Results and Discussion
5.3.1 XRD and EDS of Synthesized Composites
5.3.2 Morphological Analysis of Composites
5.3.3 OER Catalytic Evaluation of Composites
5.3.4 One Dimensional Importance of Substrate Material
5.3.5 XPS Analysis of Synthesized Composites
5.4 Summary
Chapter Ⅵ Conclusion and Future Stance
6.1 Schematic Conclusion
6.2 Prospect
References
Published Work during PhD
Acknowledgement
本文编号:2927126
本文链接:https://www.wllwen.com/projectlw/hxgylw/2927126.html
最近更新
教材专著