马铃薯渣及其膳食纤维结构、物化与功能特性研究
发布时间:2021-06-07 21:09
马铃薯(Solanum tuberosum)是仅次于小麦、水稻和玉米的世界第四大粮食作物。淀粉加工过程中产生大量马铃薯渣,这些薯渣中含有蛋白质、淀粉、膳食纤维等物质,且粒径对甘薯渣的加工特性有不同的影响。此外,目前未见不同环境因子及改性处理对马铃薯膳食纤维结构、物化及功能特性的影响。因此,本论文研究了不同粒径对马铃薯渣结构、物化及功能特性的影响,以及对添加不同粒径马铃薯渣粉条品质特性的影响。此外,还研究了环境因素及改性处理对马铃薯膳食纤维结构、物化和功能特性的影响。本研究成果可为马铃薯渣及其膳食纤维在食品工业中的应用提供基础数据和理论依据。结果如下:研究了粒径对甘薯渣结构、物化及功能特性的影响规律,以及对添加马铃薯渣粉条品质特性的影响。结果显示,马铃薯渣中蛋白、灰分、膳食纤维含量以及持水能力、溶解度随粒径的减小而降低,而淀粉、脂肪、总酚含量以及α-淀粉酶活性抑制能力随粒径的减小而增大。超微粉碎处理的马铃薯渣具有最高的总酚含量(2.26 mgCAE/g)、葡萄糖吸收能力(7.03 mmol/g)和胆固醇吸收能力(16.54%),并且超微粉碎马铃薯渣制作的高纤粉条具有较好的拉伸特性和蒸煮特...
【文章来源】:中国农业科学院北京市
【文章页数】:103 页
【学位级别】:博士
【文章目录】:
博士学位论文评阅人、答辩委员会签名表
摘要
abstract
Abbreviations
CHAPTER 1 INTRODUCTION
1.1 General Introduction
1.2 Potato residue:characterization and utilization
1.2.1 Values and environmental risk of potato waste residue
1.2.2 Particle size and grinding effect on potato residue
1.3 Dietary fibre production and utilization from potato wastes residue
1.4 Modified Dietary fibre production and utilization
1.5 Aim and content of research
1.5.1Aim
1.5.2 Research content
1.5.3 Technical road map
CHAPTER 2 EFFECTS OF PARTICLE SIZE ON STRUCTURAL,PHYSICOCHEMICAL,AND FUNCTIONAL PROPERTIES OF POTATO RESIDUE AND THE QUALITY CHARACTERISTICS OF STARCH NOODLES THEREOF
2.1 Introduction
2.2 Materials and methods
2.2.1 Materials and reagents
2.2.2 Preparation of potato residue with different particle size
2.2.3 Particle size distribution
2.2.4 Proximate composition
2.2.5 Color measurement
2.2.6 Total polyphenol content
2.2.7 Thermal Properties
2.2.8 Fourier-transformed infrared spectroscopy(FT-IR)
2.2.9 Scanning electron microscopy(SEM)
2.2.10 Physicochemical and functional properties
2.2.11 Starch noodles preparation and qualities determination
2.2.12 Statistical analysis
2.3 Results and discussion
2.3.1 Proximate composition of potato residue flours
2.3.2 Particle size distribution
2.3.3 Colour measurement
2.3.4 Phenolic compound
2.3.5 Thermal properties of potato residues
2.3.6 FT-IR spectra
2.3.7 SEM observation
2.3.8 Hydration properties
2.3.9 Functional properties
2.3.10 Textural properties of wet starch noodles
2.3.11 Cooking time
2.3.12 In vitro starch digestibility
2.4 Conclusion
CHAPTER 3 STRUCTURE,PHYSICOCHEMICAL,AND FUNCTIONAL PROPERTIES OF TOTAL,SOLUBLE,AND INSOLUBLE DIETARY FIBER FROM POTATO RESIDUES
3.1 Introduction
3.2 Material and methods
3.2.1 Materials and reagents:
3.2.2 Dietary fiber preparation and extraction from potato residue
3.2.3 Proximate composition
3.2.4 Chemical constituents
3.2.5 Neutral sugars and uronic acid content of potato dietary fibres
3.2.6 Water retention capacity(WRC)
3.2.7 Water solubility(WS)
3.2.8 Water swelling capacity(WSC)
3.2.9 Oil holding capacity(OHC)
3.2.10 Glucose adsorption capacity(GAC)
3.2.11 Cholesterol binding capacity(CBC)
3.2.12 α-Amylase activity inhibition ratio(α-AAIR)
3.2.13 Fourier-transformed infrared spectroscopy(FT-IR)
3.2.14 Scanning electron microscopy(SEM)
3.2.15 Statistical analysis
3.3 Results and discussion
3.3.1 Characterization of DFs from potato residue
3.3.2 Monosaccharide content of potato dietary fibre
3.3.3 Scanning electron microscopy(SEM)
3.3.4 FT-IR Spectra
3.3.5 Physicochemical properties
3.3.6 Functional properties
3.4 Conclusion
CHAPTER 4 EFFECTS OF HIGH HYDROSTATIC PRESSURE AND CELLULASE MODIFICATION ON THE STRUCTURAL,PHYSICOCHEMICAL,AND FUNCTIONAL PROPERTIES OF POTATO DIETARY FIBER
4.1 Introduction
4.2 Material and methods
4.2.1 Materials and reagents
4.2.2 Dietary fiber preparation and extraction from potato residue
4.2.3 Single‐factor experiment
4.2.4 High hydrostatic pressure(HHP)modification
4.2.5 Enzymatic hydrolysis
4.2.6 Combined enzyme and HHP treated modified DF
4.2.7 Soluble dietary fiber(SDF)determination
4.2.8 Proximate composition
4.2.9 Neutral sugars and uronic acid content of potato modified dietary fibres
4.2.10 Scanning electron microscopy(SEM)
4.2.11 Fourier-transformed infrared spectroscopy(FT-IR)
4.2.12 Water retention capacity(WRC)
4.2.13 Water solubility(WS)
4.2.14 Water swelling capacity(WSC)
4.2.15 Oil holding capacity(OHC)
4.2.16 Glucose adsorption capacity(GAC)
4.2.17 Cholesterol binding capacity(CBC)
4.2.18 α-Amylase activity inhibition ratio(α-AAIR)
4.2.19 Statistical analysis
4.3 Results and discussion
4.3.1 Single‐factor experiment analysis
4.3.2 DF components
4.3.3 Monosaccharide and uronic acid composition of potato dietary fibre
4.3.4 Scanning electron microscopy(SEM)
4.3.5 FT-IR Spectra
4.3.6 Physicochemical properties of unmodified and modified DFs
4.3.7 Functional properties
4.4 Conclusion
CHAPTER 5 OVERALL CONCLUSION AND RECOMMENDATION
5.1 Conclusion
5.2 Recommendations
Bibliography
Acknowledgement
Resume
【参考文献】:
期刊论文
[1]Anticancer effects of sweet potato protein on human colorectal cancer cells[J]. Peng-Gao Li,Tai-Hua Mu,Le Deng. World Journal of Gastroenterology. 2013(21)
[2]旋流与酸浆法甘薯淀粉性能及粉条品质比较[J]. 邓福明,木泰华,张苗. 食品工业科技. 2012(17)
[3]固态气爆技术制备玉米皮水溶性膳食纤维的研究[J]. 王安建,田广瑞,魏书信,王赵改. 食品科技. 2011(06)
本文编号:3217314
【文章来源】:中国农业科学院北京市
【文章页数】:103 页
【学位级别】:博士
【文章目录】:
博士学位论文评阅人、答辩委员会签名表
摘要
abstract
Abbreviations
CHAPTER 1 INTRODUCTION
1.1 General Introduction
1.2 Potato residue:characterization and utilization
1.2.1 Values and environmental risk of potato waste residue
1.2.2 Particle size and grinding effect on potato residue
1.3 Dietary fibre production and utilization from potato wastes residue
1.4 Modified Dietary fibre production and utilization
1.5 Aim and content of research
1.5.1Aim
1.5.2 Research content
1.5.3 Technical road map
CHAPTER 2 EFFECTS OF PARTICLE SIZE ON STRUCTURAL,PHYSICOCHEMICAL,AND FUNCTIONAL PROPERTIES OF POTATO RESIDUE AND THE QUALITY CHARACTERISTICS OF STARCH NOODLES THEREOF
2.1 Introduction
2.2 Materials and methods
2.2.1 Materials and reagents
2.2.2 Preparation of potato residue with different particle size
2.2.3 Particle size distribution
2.2.4 Proximate composition
2.2.5 Color measurement
2.2.6 Total polyphenol content
2.2.7 Thermal Properties
2.2.8 Fourier-transformed infrared spectroscopy(FT-IR)
2.2.9 Scanning electron microscopy(SEM)
2.2.10 Physicochemical and functional properties
2.2.11 Starch noodles preparation and qualities determination
2.2.12 Statistical analysis
2.3 Results and discussion
2.3.1 Proximate composition of potato residue flours
2.3.2 Particle size distribution
2.3.3 Colour measurement
2.3.4 Phenolic compound
2.3.5 Thermal properties of potato residues
2.3.6 FT-IR spectra
2.3.7 SEM observation
2.3.8 Hydration properties
2.3.9 Functional properties
2.3.10 Textural properties of wet starch noodles
2.3.11 Cooking time
2.3.12 In vitro starch digestibility
2.4 Conclusion
CHAPTER 3 STRUCTURE,PHYSICOCHEMICAL,AND FUNCTIONAL PROPERTIES OF TOTAL,SOLUBLE,AND INSOLUBLE DIETARY FIBER FROM POTATO RESIDUES
3.1 Introduction
3.2 Material and methods
3.2.1 Materials and reagents:
3.2.2 Dietary fiber preparation and extraction from potato residue
3.2.3 Proximate composition
3.2.4 Chemical constituents
3.2.5 Neutral sugars and uronic acid content of potato dietary fibres
3.2.6 Water retention capacity(WRC)
3.2.7 Water solubility(WS)
3.2.8 Water swelling capacity(WSC)
3.2.9 Oil holding capacity(OHC)
3.2.10 Glucose adsorption capacity(GAC)
3.2.11 Cholesterol binding capacity(CBC)
3.2.12 α-Amylase activity inhibition ratio(α-AAIR)
3.2.13 Fourier-transformed infrared spectroscopy(FT-IR)
3.2.14 Scanning electron microscopy(SEM)
3.2.15 Statistical analysis
3.3 Results and discussion
3.3.1 Characterization of DFs from potato residue
3.3.2 Monosaccharide content of potato dietary fibre
3.3.3 Scanning electron microscopy(SEM)
3.3.4 FT-IR Spectra
3.3.5 Physicochemical properties
3.3.6 Functional properties
3.4 Conclusion
CHAPTER 4 EFFECTS OF HIGH HYDROSTATIC PRESSURE AND CELLULASE MODIFICATION ON THE STRUCTURAL,PHYSICOCHEMICAL,AND FUNCTIONAL PROPERTIES OF POTATO DIETARY FIBER
4.1 Introduction
4.2 Material and methods
4.2.1 Materials and reagents
4.2.2 Dietary fiber preparation and extraction from potato residue
4.2.3 Single‐factor experiment
4.2.4 High hydrostatic pressure(HHP)modification
4.2.5 Enzymatic hydrolysis
4.2.6 Combined enzyme and HHP treated modified DF
4.2.7 Soluble dietary fiber(SDF)determination
4.2.8 Proximate composition
4.2.9 Neutral sugars and uronic acid content of potato modified dietary fibres
4.2.10 Scanning electron microscopy(SEM)
4.2.11 Fourier-transformed infrared spectroscopy(FT-IR)
4.2.12 Water retention capacity(WRC)
4.2.13 Water solubility(WS)
4.2.14 Water swelling capacity(WSC)
4.2.15 Oil holding capacity(OHC)
4.2.16 Glucose adsorption capacity(GAC)
4.2.17 Cholesterol binding capacity(CBC)
4.2.18 α-Amylase activity inhibition ratio(α-AAIR)
4.2.19 Statistical analysis
4.3 Results and discussion
4.3.1 Single‐factor experiment analysis
4.3.2 DF components
4.3.3 Monosaccharide and uronic acid composition of potato dietary fibre
4.3.4 Scanning electron microscopy(SEM)
4.3.5 FT-IR Spectra
4.3.6 Physicochemical properties of unmodified and modified DFs
4.3.7 Functional properties
4.4 Conclusion
CHAPTER 5 OVERALL CONCLUSION AND RECOMMENDATION
5.1 Conclusion
5.2 Recommendations
Bibliography
Acknowledgement
Resume
【参考文献】:
期刊论文
[1]Anticancer effects of sweet potato protein on human colorectal cancer cells[J]. Peng-Gao Li,Tai-Hua Mu,Le Deng. World Journal of Gastroenterology. 2013(21)
[2]旋流与酸浆法甘薯淀粉性能及粉条品质比较[J]. 邓福明,木泰华,张苗. 食品工业科技. 2012(17)
[3]固态气爆技术制备玉米皮水溶性膳食纤维的研究[J]. 王安建,田广瑞,魏书信,王赵改. 食品科技. 2011(06)
本文编号:3217314
本文链接:https://www.wllwen.com/projectlw/qgylw/3217314.html