当前位置:主页 > 管理论文 > 企业管理论文 >

产业结构调整对电力需求的影响及其模型构建

发布时间:2018-01-08 13:30

  本文关键词:产业结构调整对电力需求的影响及其模型构建 出处:《华北电力大学(北京)》2016年硕士论文 论文类型:学位论文


  更多相关文章: 电力需求 结构调整 经济发展 协整分析 因素分解 高耗能行业


【摘要】:电力工业是国民经济的基础产业,电力的生产及充足供给是经济发展、社会进步以及人民生活水平提高的必要条件。改革开放以来,中国的经济增长方式发生转变,产业结构不断调整,导致电力供需关系随之变化。随着可持续发展战略的实施以及经济新常态的出现,产业结构调整必将对电力需求造成重要影响。因此,研究产业结构调整对电力需求的影响对一个地区社会经济的发展以及电网规划都具有实际意义。本文将定性分析与定量分析相结合,分别从三次产业、八大行业以及高耗能行业三个层面层层递进地分析产业结构调整对各行业电力需求的影响。首先,分析产业结构调整对三次产业电力需求及其结构的影响,运用灰色关联理论筛选对电力需求影响较大的指标,并在此基础上运用协整理论构建产业结构调整和电力需求的关系模型;然后,根据国家统计局对国民经济活动的划分将三次产业细分为八大行业,分析产业结构调整对八大行业的电力需求及结构的影响,并运用对数平均迪式指数分解法(Log-Mean Divisia Index Method, LMDI)分析影响八大行业电力需求及其电力强度变化的规模、结构和效率等因素,找出关键影响因素;最后,进一步研究八大行业中的支柱产业——工业,根据国家统计局对工业内部高耗能行业的划分,分析产业结构调整对高耗能行业的电力需求及结构的影响,运用LMDI分解法找出对高耗能行业整体的电力需求及其电力强度变化影响较大的关键因素,并运用Panel Data面板数据理论分析产业结构调整对各高耗能行业电力需求的影响。本文以山西省改革开放以来的经济增长和电力需求相关数据为基础进行实证研究,构建了山西省产业结构调整、经济增长与电力需求的协整关系模型,证明了产业结构调整对电力需求的影响;对山西省八大行业电力需求及电力强度的因素分解结果显示,工业是影响八大行业电力需求和电力强度的关键行业;进一步对工业内部的高耗能行业电力需求和电力强度进行因素分解,结果显示以有色金属冶炼及压延加工业为代表的高耗能行业是影响整体电力消费和电力强度的关键行业,因素分解的结果证实了山西省产业结构调整对各行业的电力需求及结构组成有明显的影响;构建了山西省七大高耗能行业经济增长、电力利用效率与电力需求关系的面板数据模型,结果显示对以有色金属冶炼及压延加工业为代表的电力强度仍然较高的行业进行结构调整,降低其电力强度,能够有效降低电力需求,是山西省未来产业结构调整的重点方向。
[Abstract]:Electric power industry is the basic industry of the national economy. The production and adequate supply of electric power is a necessary condition for economic development, social progress and the improvement of people's living standard. With the implementation of the sustainable development strategy and the emergence of a new normal economy, China's economic growth mode has changed and the industrial structure has been constantly adjusted, resulting in a change in the power supply and demand relationship along with the implementation of the sustainable development strategy. The adjustment of industrial structure will have an important impact on the power demand. It is of practical significance to study the influence of industrial structure adjustment on power demand for the development of social economy and power network planning in a region. This paper combines qualitative analysis with quantitative analysis, respectively from three industries. Eight industries and three levels of high energy consumption industry layer by layer analysis of the impact of industrial structure adjustment on the power demand of each industry. First, the impact of industrial structure adjustment on the third industrial electricity demand and its structure. The grey relational theory is used to screen the indexes which have a great influence on the power demand, and on this basis, the relationship model between the industrial structure adjustment and the power demand is constructed by using the co-arrangement theory. Then, according to the division of national economic activities of the National Bureau of Statistics, the three industries are divided into eight industries, and the impact of industrial structure adjustment on the electricity demand and structure of the eight industries is analyzed. Log-Mean Divisia Index Method was used in this paper. LMDI) analyzes the scale, structure and efficiency of power demand and power intensity change in eight industries, and finds out the key factors. Finally, the paper further studies the pillar industry of the eight major industries-industry, according to the division of high-energy industries within the industry by the National Bureau of Statistics, and analyzes the impact of industrial structure adjustment on the power demand and structure of high-energy consuming industries. The LMDI decomposition method is used to find out the key factors that have a great influence on the overall power demand and the change of the power intensity of the high energy consuming industry. And use Panel. Data panel data theory analyzes the impact of industrial structure adjustment on the power demand of high energy-consuming industries. This paper based on the economic growth and power demand related data of Shanxi Province since the reform and opening to the outside world. The cointegration model of industrial structure adjustment, economic growth and power demand in Shanxi Province is constructed, which proves the influence of industrial structure adjustment on power demand. The results of factor decomposition of power demand and power intensity in eight major industries in Shanxi Province show that industry is the key industry affecting power demand and power intensity in eight major industries. Further factor decomposition of power demand and power intensity of high energy consuming industry is carried out. The results show that the high energy consumption industry, represented by non-ferrous metal smelting and calender processing industry, is the key industry affecting the overall power consumption and power intensity. The result of factor decomposition proves that the adjustment of industrial structure in Shanxi Province has obvious influence on the power demand and structure composition of each industry. The panel data model of economic growth, power utilization efficiency and power demand of seven major energy-consuming industries in Shanxi Province is constructed. The results show that the structure adjustment and the reduction of electric power intensity can effectively reduce the power demand in industries represented by non-ferrous metal smelting and calender processing industry. Shanxi Province in the future industrial structure adjustment of the key direction.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:F426.61;F121.3

【参考文献】

相关期刊论文 前10条

1 孙祥栋;张亮亮;;电力消费与经济增长:基于季度数据的因果分析[J];华北电力大学学报(社会科学版);2015年05期

2 HU Jian-bo;;Low-carbon transformation of industrial structure in China[J];Ecological Economy;2015年03期

3 刘玲;马晓青;;区域经济增长与电力消费的相关性[J];系统工程;2015年06期

4 卢洪友;张靖妤;祁毓;;新常态下经济结构调整与环境保护方向探析[J];环境保护;2015年02期

5 高亚静;吕孟扩;梁海峰;张建成;;基于离散吸引力模型的用电需求价格弹性矩阵[J];电力系统自动化;2014年13期

6 杨嵘;白佐萌;;基于协整理论的陕西省能源消费与经济增长关系研究[J];西安石油大学学报(社会科学版);2014年03期

7 刘生龙;高宇宁;胡鞍钢;;电力消费与中国经济增长[J];产业经济研究;2014年03期

8 王文举;向其凤;;中国产业结构调整及其节能减排潜力评估[J];中国工业经济;2014年01期

9 罗国东;;基于改进电力弹性系数法的负荷预测[J];陕西电力;2013年06期

10 李志霞;任建兰;;山东省能源消费与产业结构调整关系研究[J];山东师范大学学报(自然科学版);2013年02期

相关硕士学位论文 前1条

1 郑军伟;基于灰色系统理论的数据关联度建模及其应用[D];杭州电子科技大学;2011年



本文编号:1397313

资料下载
论文发表

本文链接:https://www.wllwen.com/qiyeguanlilunwen/1397313.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1d988***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com