比例性偏离份额空间模型推演及应用
发布时间:2018-01-22 11:13
本文关键词: 偏离份额分析 经济增长 分量结构 标准化增速 空间结构 出处:《地理研究》2013年04期 论文类型:期刊论文
【摘要】:通过在模型分量结构中置换共享分量、嵌入区域分量和重组残差分量实现了区域分量和结构分量的初步分离,又通过增速标准化处理分别排除了产业结构和规模差异对区域分量和结构分量测算的影响,实现了偏离份额分析从区域考察期增量中分离出区域经济结构差异和规模差异对经济增长贡献的目标。新推演的结构分量真正实现了区域经济结构差异的横纵向比较,尤其是通过同时测算区域产业规模结构和增速结构差异揭示了区域规模和增速占优产业的集中分布情况。此外,为已有的20种分解结构分类补充了8种分解结构,并以环比式动态算法下的比例性偏离份额空间模型对安徽省各地级市2000-2010年经济增长进行了分析。
[Abstract]:By replacing the shared component in the model component structure, embedding the region component and the recombination residual component, the primary separation of the region component and the structural component is realized. Through the standardization of growth rate, the influence of industrial structure and scale difference on regional component and structural component is excluded respectively. The objective of separating the difference of regional economic structure from the increment of regional economic structure and the contribution of scale difference to economic growth from the increment of regional investigation period is realized by the analysis of deviation share. The new deduced structural component really realizes the horizontal and vertical structure difference of regional economic structure. Comparison. In particular, by simultaneously measuring the regional industrial structure and growth structure differences reveal the regional scale and growth rate of the dominant industries concentrated distribution. Eight kinds of decomposition structures are added to the existing 20 kinds of decomposition structure classification. The economic growth of cities in Anhui Province from 2000 to 2010 is analyzed by using the proportional deviation share space model based on the dynamic algorithm of ring comparison.
【作者单位】: 安徽师范大学国土资源与旅游学院;
【基金】:国家自然科学基金项目(41171114)
【分类号】:K902
【正文快照】: 1引言偏离份额模型(Shift-Share model,简称SSM)被认为是研究区域经济增长最为有效的统计分析方法之一[1]。该模型通过对区域经济变量(如收入、产值、就业人数、注册企业和劳动生产率等)增长的参比分解很好地描述了区域经济增长的历时变更和区域之间的空间差异。在国外,偏离
【参考文献】
相关期刊论文 前3条
1 陈朝泰;江苏经济增长的偏离份额分析法[J];系统工程理论与实践;1996年05期
2 史春云;张捷;高薇;杨e,
本文编号:1454505
本文链接:https://www.wllwen.com/shekelunwen/dllw/1454505.html