当前位置:主页 > 社科论文 > 公安论文 >

SNAPs与吗啡依赖关系的初步实验研究

发布时间:2018-05-19 02:14

  本文选题:可溶性NSF附着蛋白 + 突触可塑性 ; 参考:《河北医科大学》2008年博士论文


【摘要】: 阿片依赖是一种慢性复发性脑病,以强迫用药、不断增加药物摄入量和停药时出现戒断综合征为主要特征。目前阿片依赖发生的确切机制还不清楚。大量研究表明,突触可塑性的改变在阿片依赖过程中起了重要作用。这些变化包括突触前神经递质的释放和突触后受体的信号转导。以往研究发现,吗啡可以通过调节突触前影响神经递质释放的分子影响递质释放。 在神经递质的释放过程中,囊泡膜和质膜的融合是影响递质释放的关键步骤。可溶性NSF附着蛋白(Soluble NSF attachment proteins,SNAPs)是一类在膜融合过程中发挥重要作用的蛋白质分子,介导了囊泡膜和质膜的融合,在哺乳动物中存在α-,β-,和γ- 3种亚型。鉴于SNAPs在膜融合过程中发挥的重要作用,SNAPs参与许多重要的生理进程,包括调节钙依赖的胞吐机制、刺激胰岛β细胞分泌胰岛素、增加肺泡II型细胞表面活性物质的分泌、参与有丝分裂过程中核膜的形成等。 虽然大量研究表明SNAPs在神经递质释放的膜融合过程中起重要作用,但是SNAPs是否参与了阿片依赖过程中突触前神经可塑性的发生目前尚未见报道。为了揭示SNAPs与阿片依赖的关系,我们首先在大鼠吗啡依赖及戒断模型上观察了与神经可塑性关系密切的脑区伏隔核(nucleus accumbens,NAc)、尾壳核(caudate putamen,CPu)及海马(hippocampus,Hip)中SNAPs表达的变化,初步探讨SNAPs和吗啡依赖的关系。研究采用成年雄性Wistar大鼠,随机分为对照组、吗啡组和戒断不同时间组。吗啡组大鼠背部皮下注射吗啡8d,每日3次,剂量递增,对照组大鼠注射等体积生理盐水。吗啡组末次注射吗啡4 h后处死,断头取脑。自然戒断组分别在戒断不同时间处死动物。各组均设平行对照。利用RT-PCR和Western blot技术分别检测各脑区SNAPs的mRNA和蛋白表达水平。结果发现,与对照组相比,慢性吗啡依赖大鼠CPu内γ-SNAP的mRNA和蛋白表达水平均上调25%左右(P0.01) (图1.4,图1.9),NAc及Hip脑区则无明显变化,自然戒断d2、d3、d7组亦未观察到γ-SNAP明显的表达改变(图1.8,图1.10,表1.1,表1.3)。α-SNAP和β-SNAP在吗啡依赖和自然戒断状态下3个被检脑区(NAc、CPu、Hip)均未检测到明显的表达变化(图1.2,图1.3,图1.5,图1.6,图1.7,表1.1,表1.2)。以上结果说明:慢性吗啡依赖可增加CPu内γ-SNAP的表达,对α-SNAP和β-SNAP的表达没有影响,提示SNAPs 3种亚型在慢性吗啡依赖过程中行使不同的功能,可能与特定神经递质的分泌有关。慢性吗啡依赖及戒断引起的突触前神经递质释放改变可能不是由α-SNAP和β-SNAP表达量变化介导的,其具体机制可能与其内在活性变化或蛋白在细胞内的分布有关。 为了进一步研究SNAPs与阿片依赖的关系,我们选择了一种与神经递质释放关系最为明确的亚型—α-SNAP进行研究。已有大量研究报道α-SNAP参与钙依赖的胞吐作用,该作用在神经递质释放过程中的囊泡膜与质膜的融合步骤中是至关重要的。且相关研究报道α-SNAP通过刺激NSF的ATP酶活性来发挥其在递质释放中的作用,α-SNAP对NSF的ATP酶刺激作用明显强于γ-SNAP。因此,虽然我们在动物模型上未检测到α-SNAP的蛋白表达变化,但由于其在递质释放中的重要作用,我们依然选择这种亚型作为研究对象。为了进一步研究α-SNAP的功能与吗啡依赖的关系,选择一个良好的、调控模式相对简单和直接的细胞模型是十分必要的。该细胞模型必须能够满足以下条件:(1)表达阿片受体;(2)拥有类似成熟神经内分泌细胞的一些特性,能释放与阿片依赖有关的神经递质,如单胺类、谷氨酸(glutamate,Glu)、γ-氨基丁酸(γ-aminobutyric acid ,GABA)等。经过初步筛选,我们选择了分化的人神经母细胞瘤细胞株SH-SY5Y作为研究对象。据研究报道,SH-SY5Y细胞株经过维甲酸(retinoic acid,RA)分化后可表现出许多类似成熟神经元的特性,如神经突起变长、电刺激的兴奋性增加、神经元特异性烯醇化酶(neuron specific enolase,NSE)表达增加、神经分泌颗粒增多等。 在研究中我们发现,RA分化6天的SH-SY5Y细胞可形成较长的神经突起(图2.1),免疫印迹分析检测到分化后的细胞内NSE表达增加(图2.2)。另外,在我们的研究中亦发现了RA分化后的细胞μ阿片受体(μopioid receptor,MOR)表达上调,与以往研究相一致(图2.3)。这些特性都为我们研究阿片依赖的分子机制提供了有力的条件,尤其是与突触前神经递质释放有关的分子机制。为了研究与阿片依赖有关的分子机制,我们首先需要在SH-SY5Y细胞上建立一个阿片依赖的细胞模型。阿片长期暴露后给予纳络酮催促戒断出现cAMP超射常常被作为评定阿片依赖模型建立是否成功的一个重要指标。本研究采用免疫竞争结合法,测定了吗啡处理前后细胞内cAMP含量的变化,发现100μM吗啡作用分化SH-SY5Y细胞24h后给予纳络酮催促戒断可形成明显的cAMP超射,cAMP含量约为催促前的2.36倍(图2.5),证实了分化SH-SY5Y细胞上吗啡依赖的细胞模型建立是成功的。 为了进一步确定吗啡处理过程中神经递质的释放情况,我们采用高效液相-电化学检测法(high performance liquid chromatography- electrochemical detection,HPLC-ECD)测定了急性吗啡作用及慢性吗啡作用纳络酮催促戒断后不同时间SH-SY5Y细胞培养上清液中单胺类神经递质的含量,探讨吗啡处理与神经递质释放的关系。结果显示,在急性吗啡作用下,单胺类神经递质,包括去甲肾上腺素(norepinephrine,NE)、多巴胺(dopamine,DA)、5-羟色胺(5-hydroxytryptamine,5-HT)的释放均受到普遍抑制(表3.1)。100μM吗啡孵育SH-SY5Y细胞10min~1h,细胞培养上清内NE,DA和5-HT及其代谢产物3,4-二羟基苯乙酸(3,4-dihydroxy- phenylacetic acid,DOPAC) (DA代谢产物)和5-羟基吲哚乙酸(5-hydroxyindolacetic acid,5-HIAA )(5-HT代谢产物)均显著下降,其中NE含量从16.97 ng/g蛋白下降至5.34 ng/g蛋白,下降幅度以吗啡作用10min内下降最为明显(P 0.01),在吗啡继续作用的50min内一直保持在较低水平(图3.4)。DA的变化趋势与NE类似,在吗啡作用的最初10min亦出现明显下降,而且下降幅度在2/3以上(P 0.01) (图3.6)。虽然5-HT在吗啡急性作用的早期出现中等程度的下降,但在吗啡继续作用的50min内,5-HT含量继续降低,至吗啡作用后1h达到基础水平的1/3左右(P0.01)(图3.8)。与吗啡处理前相比,代谢产物DOPAC和5-HIAA均出现不同程度的降低(P0.01) (图3.5,图3.7)。这些结果表明,急性吗啡作用可以显著抑制SH-SY5Y细胞单胺类神经递质的释放。 在给予100μM吗啡孵育细胞24h后用100μM纳络酮催促戒断测定SH-SY5Y细胞上清单胺类神经递质的含量,结果发现:NE、DA和5-HT及其代谢产物DOPAC和5-HIAA均有不同程度的增加(表3.2)。NE的含量在戒断20 min后由戒断前7.59 ng/g蛋白增加至12.74 ng/g蛋白,增加50%左右,与催促前相比有显著性差异(P 0.01),在戒断40min时恢复至戒断前水平(图3.9)。与NE相比,DA的变化趋势更加明显,DA在戒断的10min即有增加趋势,但与催促前相比无显著性差异(P 0.05),在戒断20min时达最高值,约为催促前基础水平的2倍(P 0.05) (图3.11)。5-HT在戒断后40min出现明显增高,增加幅度约为催促前的2倍(P 0.05) (图3.13)。与吗啡处理前相比,代谢产物DOPAC和5-HIAA均出现不同程度的增加(P0.05) (图3.10,图3.12)。这些结果说明:慢性吗啡作用后给予纳络酮催促戒断可明显刺激SH-SY5Y细胞内单胺类神经递质的释放,在给予纳络酮20~40min时培养上清中单胺类神经递质含量达到高峰,其后迅速下降。 为了进一步探讨α-SNAP是否参与了吗啡处理引起的递质释放变化的调节,我们在SH-SY5Y细胞模型上又检测了吗啡作用不同时间α-SNAP的表达情况。结果发现,α-SNAP mRNA在吗啡作用的1h、6h、24h均未检测到明显的表达变化(图4.2),Western blot检测吗啡作用1h、8h、24hα-SNAP的蛋白表达亦未发现明显改变(图4.3),上述结果与动物模型上结果相一致。以上结果提示:吗啡作用不引起α-SNAP的表达变化。那么作为一个与神经递质释放关系密切的因子,它是否参与了吗啡处理引起的突触前可塑性的改变呢? 研究发现,神经递质的胞吐过程有一系列分子事件的参与,包括囊泡移动、搭靠、融合、内吞等。现在公认的递质释放中膜融合的模式是“SNARE假说”。“SNARE假说”认为,在膜融合过程中,20S复合体的聚合和解聚是其中的关键步骤。复合体的聚合始于v-SNAREs和t-SNAREs的结合。v-SNAREs和t-SNAREs分别定位于囊泡膜和质膜上,t-SNAREs包括SNAP-25和Syntaxin。膜融合发生前,t-SNAREs与v-SNAREs结合形成一个沉降系数为7S的SNARE复合物。一个7S SNARE复合物可以吸引3个α-SNAP分子,然后招募NSF使其连接至膜上。这样,SNARE、NSF和α-SNAP就形成了一个20S复合体。20S复合体一旦形成,随即在NSF的ATP酶作用下水解,同时引起SNARE分子的变构,阻止其继续聚合。SANRE解体后,形成20S复合体的各个组分又被释放到胞浆中,参与下一轮的囊泡循环。由于膜融合过程中形成20S复合体的t-SNARE位于突触前膜,所以我们推测α-SNAP在参与膜融合发生的过程中其细胞内分布有可能发生了变化,如由胞浆分布转移至胞膜。因此,我们在SH-SY5Y细胞模型上采用免疫细胞化学结合激光共聚焦检测技术又继续观察了α-SNAP在吗啡处理后的亚细胞定位。结果发现,在吗啡处理24h后给予纳络酮催促戒断20min可观测到α-SNAP开始由胞浆向胞膜转位,在随后的40min内该现象一直持续存在。在纳络酮处理60min时,转位现象仍较明显(图4.5)。而急性吗啡作用1h内未检测到上述变化(图4.4)。以上结果说明:慢性吗啡处理后给予纳络酮催促戒断可引起α-SNAP由胞浆向胞膜的转位,其转位发生的时间与递质释放变化的时间大致吻合,提示其有可能与吗啡作用引起的神经递质释放变化有关。 本研究通过测定吗啡处理及戒断不同状态下SNAPs表达、亚细胞定位及神经递质的释放情况,得出以下结论:(1)慢性吗啡处理及自然戒断对大鼠脑区NAc、CPu和Hip内α-SNAP的表达无明显影响;(2)慢性吗啡处理可上调大鼠CPu内γ-SNAP的表达,但自然戒断无上述改变,慢性吗啡处理及自然戒断对大鼠NAc和Hip内γ-SNAP的表达均无明显影响;(3)SH-SY5Y细胞可用于建立慢性吗啡依赖模型;(4)急性吗啡处理可抑制SH-SY5Y细胞单胺类神经递质的释放,慢性吗啡处理后给予纳络酮催促戒断可刺激SH-SY5Y细胞单胺类神经递质的释放;(5)急慢性吗啡处理不影响SH-SY5Y细胞内α-SNAP的表达;急性吗啡处理不引起α-SNAP亚细胞定位的改变;慢性吗啡处理后给予纳络酮催促戒断可引起α-SNAP由胞浆至胞膜的亚细胞定位发生改变,其转位可能与戒断过程中神经递质释放增加有关。
[Abstract]:......
【学位授予单位】:河北医科大学
【学位级别】:博士
【学位授予年份】:2008
【分类号】:D919

【相似文献】

中国期刊全文数据库 前10条

1 徐振华;许能贵;易玮;符文彬;靳瑞;;针刺对大鼠脑缺血后海马突触可塑性的促进作用[J];安徽中医学院学报;2007年03期

2 张炼;肖鸿美;周艳霞;罗小平;;大鼠海马齿状回外侧支的再可塑性[J];华中科技大学学报(医学版);2007年04期

3 高原;肖谦;赵柯湘;高爱滨;吴绮楠;李龙英;张海娜;;尼莫地平对糖尿病大鼠模型认知功能的保护作用[J];中国老年学杂志;2007年18期

4 高家林;田艳;罗素元;;突触可塑性与药物成瘾[J];中国药物依赖性杂志;2008年01期

5 何颖颖;王晓艺;陆林;;NMDARs转运与突触可塑性及神经精神疾病[J];中国药物依赖性杂志;2008年03期

6 林蕾;张良成;郭永正;;突触可塑性及相关物质的研究进展[J];中华全科医学;2009年09期

7 吴雪伟,李敏;Eph-ephrin与突触可塑性[J];生理科学进展;2005年03期

8 张妍;唐民科;张均田;;树突棘与学习记忆[J];国际神经病学神经外科学杂志;2006年04期

9 陈丽;蒋马莉;韩太真;;诱导成年大鼠海马CA1区长时程压抑的强直刺激型式(英文)[J];生理学报;2006年03期

10 陈波;袁琼兰;;胶质细胞源性神经营养因子与突触可塑性[J];四川解剖学杂志;2006年04期

中国重要会议论文全文数据库 前10条

1 吴巧凤;卢圣峰;余曙光;;沉默突触在突触可塑性及针灸促神经康复中的作用探讨[A];2010年中国针灸学会脑病专业委员会、中国针灸学会循证针灸专业委员会学术大会论文集[C];2010年

2 赵海花;赖红;李兆圣;吕永利;;铝对成年小鼠脑毒性作用的行为学及生理学研究[A];中国解剖学会2011年年会论文文摘汇编[C];2011年

3 李澎涛;潘彦舒;黄启福;贾旭;严京;王永炎;;解毒通络方对脑缺血损伤后海马区突触可塑性的影响[A];第四次全国中西医结合神经系统疾病学术研讨会论文集[C];2002年

4 马光瑜;樊小力;徐小虎;韩太真;;吗啡依赖对大鼠海马突触可塑性的影响[A];西部大开发 科教先行与可持续发展——中国科协2000年学术年会文集[C];2000年

5 孙黎明;王跃春;王子栋;;中枢NE及ACh递质衰竭大鼠海马CA3区突触可塑性研究[A];中国生理学会第21届全国代表大会暨学术会议论文摘要汇编[C];2002年

6 王月菊;陈贵海;周江宁;;衰老过程中海马特定回路突触及其可塑性的选择性改变[A];2003’离子通道、受体与信号转导专题研讨会专辑[C];2003年

7 胡剑锋;刘渝;梁培基;;视网膜外网状层突触可塑性:实验及模型分析[A];首届中国神经信息学讨论会摘要[C];2000年

8 严文文;肖鹏;刘承宜;李东风;;运动学习的生理研究进展[A];2005年中国神经心理学学术会议论文集[C];2005年

9 刘渝;梁培基;;钙在鲫鱼视网膜水平细胞突触可塑性中的作用[A];中国生理学会第21届全国代表大会暨学术会议论文摘要汇编[C];2002年

10 汪铭;佘加其;朱大淼;阮迪云;;牛磺酸、神经节苷脂和氨甲酰胆碱对铅引起的大鼠海马突触可塑性损伤的修复作用[A];中国毒理学会第四届全国学术会议论文(摘要)集[C];2005年

中国重要报纸全文数据库 前4条

1 张yN凡 本报记者 王春;“我最快乐的事情是自己的想法受到认可”[N];科技日报;2009年

2 王雪飞;间歇性低氧对学习记忆有利[N];健康报;2004年

3 宗宝泉 特约通讯员 赵如江;这里形成了集聚人才的“强磁场”[N];科技日报;2004年

4 编译 王炜;一种试验性药物有望恢复老年痴呆症患者的记忆[N];医药经济报;2009年

中国博士学位论文全文数据库 前10条

1 赵艳梅;SNAPs与吗啡依赖关系的初步实验研究[D];河北医科大学;2008年

2 司文;NR2A转基因小鼠前额叶突触可塑性及其相关功能的研究[D];华东师范大学;2010年

3 唐勇;电针促进帕金森小鼠多巴胺神经元突触可塑性的细胞分子机制[D];成都中医药大学;2004年

4 徐振华;针刺不同刺激量对脑缺血后功能恢复及突触可塑性促进作用的研究[D];广州中医药大学;2005年

5 宋月晗;阿片类物质心瘾形成相关证候及神经生物学机制研究[D];北京中医药大学;2009年

6 贺军;BDNF对大脑皮质神经元钙信号调控作用研究[D];华中科技大学;2005年

7 杜亦旭;脑缺血后突触重建与星形胶质细胞相关性及针刺干预作用研究[D];广州中医药大学;2008年

8 侯雪民;电针对脑缺血后模型大鼠突触可塑性干预作用的研究[D];广州中医药大学;2008年

9 牛磊;胚胎期吗啡暴露对大鼠海马及视觉通路突触可塑性的影响[D];中国科学技术大学;2008年

10 钟伟霞;大鼠海马可塑性改变对谷氨酸受体通道及其相关突触蛋白表达调控的研究[D];浙江大学;2006年

中国硕士学位论文全文数据库 前10条

1 王慎军;慢性饮酒及戒断致大鼠背侧纹状体突触可塑性变化的研究[D];南京医科大学;2009年

2 代春华;成年大鼠视皮层17区突触可塑性的探讨[D];青岛大学;2010年

3 徐浩;βCaMKII过量表达对小鼠海马齿状回区突触可塑性和学习记忆的影响[D];华东师范大学;2011年

4 杨李果;NR1基因敲除小鼠前额叶脑区突触可塑性及学习记忆的研究[D];华东师范大学;2011年

5 李琼;转铁蛋白受体1敲除导致海马神经元突触传递和可塑性的缺陷[D];浙江大学;2012年

6 许潇天;下丘脑外侧区(LH)和杏仁核前区(AA)神经免疫调节相关信号研究[D];中国协和医科大学;2008年

7 陈爱琴;大鼠基底外侧杏仁核五羟色胺Ⅱ受体的激活可通过NMDA介导的机制易化突触可塑性[D];福建医科大学;2003年

8 白静;NR2A转基因小鼠杏仁核区突触可塑性及情绪记忆的研究[D];华东师范大学;2007年

9 王宗青;mGluR_1在单眼形觉剥夺弱视大鼠视皮质17区的表达及神经元超微结构观察[D];新乡医学院;2007年

10 安喜艳;突触素和PSD-95在正常发育和单眼剥夺大鼠视皮层表达的研究[D];天津医科大学;2007年



本文编号:1908254

资料下载
论文发表

本文链接:https://www.wllwen.com/shekelunwen/gongan/1908254.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户36c51***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com