基于人口预测模型的我国养老保险研究
发布时间:2018-05-27 21:24
本文选题:人口预测 + 养老保险 ; 参考:《安徽大学》2013年硕士论文
【摘要】:我国在改革发展初期劳动年龄人口占总人口比重较大,抚养率比较低,为经济发展创造了有利的人口条件。近几十年经济持续快速增长已经成为一个世界“奇迹”。然而20世纪后期,为控制人口的急剧增长,我国推行了计划生育政策,这使得人口出生率迅速下降;同时随着国家经济的发展,人民生活条件的改善,我国人口平均寿命得到了延长,出生率的下降和人口平均寿命的延长这两种因素联合起来加快了我国人口老龄化的进程。如今中国早已步入了老龄化国家行列,并且人口重心不断趋于后移,这给我国养老保险体系带来沉重负担。 为了更好的量化人口结构变化给我国养老保险体系带来的影响,本文首先建立了人口预测模型,该模型由人口转移模型和基于时间序列理论构造的新生人口预测模型两个模型结合而成。基于国家统计局调查统计得到的各个年龄阶段的人口数随着时间推移而呈现出规律性变化的原理,本文构造了人口转移率。利用人口转移率和国家统计局中各个年龄阶段的人口数据既可以向前预测未来人口数,也可以向后推出在国家统计局网站上不能寻找到的各个年龄阶段历史人口数据。但该模型不能得到新生人口数,为了得到新生人口数,本文还构造了新生人口预测模型。由于该人口预测模型只是进行了局部预测,整体大部分数据是利用人口转移特征和统计规律得到,这充分利用了以往统计信息和人口年龄分布结构,从而极大的改善了预测,减少了误差。该模型充分利用了十一年的人口统计数据,这样大大降低了对单次人口统计数据精确度的依赖,并且由于其中包含了两次人口普查,由该模型的构造原理可知该模型还拥有每隔十年便向更准确人口数回归的特征。利用该模型预测出我国到2035年人口将实现零增长,这和国家统计局预计的我国人口将在2032年前后到达零增长十分接近;该模型预测我国未来人口数将会在2035年达到最大值14.7亿,其后便会逐年递减,这和联合国对中国的中方案预测值我国将于2033年达到人口峰值,最大人口总量为14.6亿人十分接近,这显示了该模型具有良好的预测能力。 接下来本文利用该模型来描绘未来我国人口老龄化进程,继而分析人口重心后移对我国养老保险体系的影响。该模型关于我国人口老龄化方面的预测显示出在2055年我国老年人口数将达到顶峰41852.18万,所占总人口比重也于2055年达到峰值30.05%,这与国务院新闻办公室发表的《中国老龄事业的发展》白皮书中预测2051年老年人口规模将达到峰值4.37亿非常接近;这也和全国老龄工作委员会办公室公布的《中国人口老龄化发展趋势预测研究报告》中预测的我国到2050年,老年人口总量将超过4亿,老龄化水平推进到30%以上十分吻合。而我国总抚养比在2012年——2055年将呈现出递增的趋势;数据显示2015年我国的总抚养比将达到50%,接近发达国家的平均总抚养比。我国总抚养比将于2055年达到最高峰,峰值为0.97,老龄人口抚养比也于2055年达到峰值0.59,未成年人口抚养比同样在2055年达到峰值0.38;这意味着到2055年每100位工作人员将要照顾97位非工作人口,其中包括59位老人和38位未成年人,届时我国的养老负担将提高到不堪承受的地步。 随后本文结合人口预测模型对影响养老金负担的各个因素进行了量化分析,这其中包括职工就业率、退休人口占老年人口的比例、劳动年龄人口比例以及老年人口数占总人口数比例等因素。最后的结论指出为了提高人民的生活水平,一方面需要将更多的老年人口纳入养老保险体系,使得人民老有所养,老有所依,老有所医;另一方面需要将更多的年青劳动人口纳入养老保险体系,以充实养老保险的资金来源,这样同时可使得将来这批年青人年老后也拥有良好的社会保障体系来改善自己的生活。
[Abstract]:In the early period of the reform and development, the labor age population accounted for a large proportion of the total population, and the dependency ratio was low, which created favorable conditions for the economic development. In the last few decades, the sustained and rapid economic growth has become a "miracle" in the world. However, in the late twentieth Century, the family planning policy was carried out in order to control the rapid growth of the population. At the same time, with the development of the country's economy and the improvement of the living conditions of the people, the average life span of our population has been extended, the decline of the birth rate and the prolongation of the average life span of the population have combined the two factors to accelerate the progress of our population aging. Now China has already entered the aging country. Moreover, the population gravity center tends to move backward, which brings heavy burden to China's endowment insurance system.
In order to better quantify the impact of demographic changes on the endowment insurance system in China, this paper first establishes a population forecasting model, which is combined with two models of population transfer model and new population forecasting model based on time series theory. The population transfer rate is constructed by the population transfer rate and the population data of all ages in the National Bureau of statistics. The population number can be predicted forward by the population transfer rate and the population data of all ages in the National Bureau of statistics. It can also be introduced back to all ages that can not be found on the website of the National Bureau of statistics. But this model can not get the number of new population. In order to get the number of new population, this paper also constructs a new population prediction model. Because the population prediction model is only local prediction, the overall majority of the data are obtained by the use of population transfer characteristics and statistical laws. This makes full use of the previous statistical information and population. The age distribution structure, which greatly improves the prediction, reduces the error. This model makes full use of eleven years of demographic data, which greatly reduces the dependence on the accuracy of single demographic data, and because it contains two census, the model structure principle knows that the model still has ten years. This model predicts that China's population will achieve zero growth by 2035, which is very close to the National Census Bureau's estimated population will reach zero growth before and after 2032, and the model predicts that our future population will reach a maximum of 1 billion 470 million in 2035, and then decline year by year. The forecast value of China's China plan and the United Nations will reach the peak of population in 2033. The maximum population is very close to 1 billion 460 million people, which shows that the model has good prediction ability.
Then we use this model to describe the process of population aging in the future, and then analyze the impact of the population shift on the pension system in China. The prediction of the aging population in China shows that the number of elderly population in China will reach a peak of 418 million 521 thousand and 800 in 2055, and the proportion of the total population is also reached in 2055. The peak is 30.05%, which is very close to the forecast of the elderly population in 2051, published by the Information Office of the State Council, which is expected to reach a peak of 437 million in the white paper. This is also the forecast of China's population aging development trend pre test report published by the office of the National Committee for ageing in China to 2050. The total population of the elderly will exceed 400 million, and the level of aging to more than 30% is very consistent. However, the total dependency ratio in China will show an increasing trend in 2012 - 2055; the data show that the total maintenance ratio of China will reach 50% in 2015 and the average total dependency ratio in developed countries. The total dependency ratio in China will reach the highest peak in 2055 and peak value in 2055. For 0.97, the aged dependency ratio reached a peak of 0.59 in 2055, while the juvenile dependency ratio reached a peak of 0.38 in 2055; this means that by 2055 every 100 staff will take care of 97 non working populations, including 59 elderly and 38 minors, when the burden of pension in our country will rise to unbearable conditions.
Then this paper quantifies the factors that affect the burden of pension, including the employment rate of the workers, the proportion of the retired people to the elderly, the proportion of the working age and the proportion of the elderly population to the total number of people. The final conclusion points out that in order to improve the living standard of the people, On the other hand, more young people should be brought into the old-age insurance system to enrich the endowment insurance system so that the young people will have a good society in the future. The guarantee system is to improve your life.
【学位授予单位】:安徽大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F224;C924.2;F842.67
【参考文献】
相关期刊论文 前10条
1 刘玉春;孟健;徐玉红;高伟;;企业养老保险精算模型分析[J];重庆科技学院学报;2006年03期
2 王晓雪,米红,陈均宇;逆系统方法在人口预测中的应用[J];中国地质大学学报(社会科学版);2004年01期
3 周志刚;万立;陈丽红;;灰色混沌神经元网络模型及其短期人口预测[J];系统工程;2012年10期
4 陈爱平,安和平;中国人口时间序列预测模型的探讨[J];人口与经济;2004年06期
5 尹春华,陈雷;基于BP神经网络人口预测模型的研究与应用[J];人口学刊;2005年02期
6 姜向群;;人口老龄化对退休金负担影响的量化研究[J];人口研究;2006年02期
7 任强;侯大道;;人口预测的随机方法:基于Leslie矩阵和ARMA模型[J];人口研究;2011年02期
8 朱庆芳;社会保障事业的发展与1990年各地区评价[J];社会科学辑刊;1992年05期
9 王周喜,胡斌,王洪萍;人口预测模型的非线性动力学研究[J];数量经济技术经济研究;2002年08期
10 郝永红,王学萌;灰色动态模型及其在人口预测中的应用[J];数学的实践与认识;2002年05期
相关硕士学位论文 前2条
1 吴喜;时间序列建模与模型选择的应用研究[D];合肥工业大学;2006年
2 陈f 源;湖北省人口中长期变化趋势灰色组合模型预测研究[D];华中农业大学;2006年
,本文编号:1943796
本文链接:https://www.wllwen.com/shekelunwen/renkou/1943796.html
最近更新
教材专著