当前位置:主页 > 社科论文 > 人口论文 >

贵州省人口老龄化的发展特点及人口预测

发布时间:2018-09-06 11:44
【摘要】:摘要:贵州于2003年步入老龄化社会,从进入老龄化社会至今呈现出较高的老龄化速度。贵州省1990年至2000年65岁及以上老年人口比重的年平均增长速度为3.37%,2000年到2010年为4.16%。2013年,全省常住人口中,65岁及以上老年人口338.51万人,占总人口的9.66%,比上年提高0.56个百分点。 本文主要分为老龄化理论部分、贵州省人口老龄化发展特点、贵州省人口总量及人口结构预测、政策建议四大部分。采用贵州省第五、六次人口普查数据及2005年1%的人口抽样调查数据,对贵州人口发展过程中老龄人口的特点进行深入分析,其中对于贵州省老龄化区域差异大这一特点选择了8个影响因素进行灰色关联分析,并以遵义市为例进行了相应分析,最后选择联合国人口预测软件中的PROJCT模型进行贵州省未来40年人口总量及人口结构类型的演变过程预测。 本文主要创新之处:内容上对贵州省老龄化问题的地区差异性从不同角度选择了八个因素进行灰色关联分析,前人对贵州人口老龄化的研究目前还未涉及这一方面;方法上使用了联合国人口预测软件中的PROJCT模型,首次将其运用到了我国省际人口的预测,这对拓宽我们的人口预测方法有一定借鉴意义。 主要研究结果:贵州省的老龄化特点主要包括农村空巢老人比例大、高龄老人数量多、老人文化水平低及地区差异明显。老龄化区域差异的主要原因是不同地区人口自然增长及结构变动的不同,其次是地区经济发展水平的差异,而社会发展水平对该地区老龄化水平的影响则相对小一些。遵义市则社会发展进程与老龄化水平关联度最大,其次是人口学因素,最后是经济发展水平。使用联合国人口预测软件中的PROJCT模型预测下的贵州省未来四十年总人口呈先缓慢增加后稍有下降的趋势,少年儿童人口比重为渐进式下降,劳动年龄人口比重在2020年之前为上升趋势,,2025年之后基本为下降走向,老年人口比重在预测年份内一直是增加的。人口结构发展来看,2010年及2020年贵州省人口金字塔形似于增长型,但劳动年龄人口相对较少,少儿人口数相对较多;从2030年开始有向稳定型过渡的趋势,到2050年整体趋向于稳定型结构,但与基本类型中的稳定结构仍有明显的差异,具体表现为老年人口比重较大且高龄人口比重增加,而儿童和劳动年龄人口比例相对较小。可以预测,2050年贵州省劳动力人口将面临更大的抚养压力,贵州将要应对更高程度的老龄化压力及高龄化难题。未来贵州可从以下几个方向开展工作以求更有效的面对老龄化问题:一是发展科技、经济转型及产业升级,吸引劳动力人口流入;二是对现有的养老保障制度的完善,特别是要向逐步实现农村养老保障全覆盖努力;三是提高老年人的文化水平,丰富其精神生活。
[Abstract]:Abstract: Guizhou stepped into an aging society in 2003. The average annual growth rate of the population aged 65 and above in Guizhou Province from 1990 to 2000 is 3.37, and from 2000 to 2010 it is 4.16.2013, 3.3851 million people aged 65 and above in the resident population of Guizhou Province, accounting for 9.66 percent of the total population, an increase of 0.56 percentage points over the previous year. This paper is mainly divided into four parts: the theory of aging, the characteristics of Guizhou population aging, the population total and population structure prediction, and the policy recommendations. Based on the data of the fifth and sixth population censuses of Guizhou Province and the data of 1% of the population sample survey in 2005, the characteristics of the aging population in Guizhou are analyzed in depth. Among them, 8 influencing factors are selected for grey correlation analysis for the characteristics of the large regional difference of aging in Guizhou Province, and the corresponding analysis is carried out in Zunyi City as an example. Finally, the PROJCT model in the United Nations population Prediction Software is selected to predict the evolution of the population and population structure in Guizhou province in the next 40 years. The main innovations of this paper are as follows: in content, eight factors are selected from different angles to analyze the regional difference of aging problem in Guizhou Province. The previous researches on population aging in Guizhou have not been involved in this aspect. The PROJCT model of the United Nations population forecasting software is used in the method, and it is applied to the interprovincial population prediction for the first time, which has some reference significance for broadening our population forecasting method. The main results are as follows: the characteristics of aging in Guizhou province include the large proportion of empty nest elderly in rural areas, the large number of senior citizens, the low educational level of the elderly and the obvious regional differences. The main reason for the regional difference of aging is the difference of natural population growth and structural change in different regions, followed by the difference of regional economic development level, while the influence of social development level on the aging level of this region is relatively small. Zunyi has the greatest correlation between the social development process and the aging level, followed by demographic factors, and finally the level of economic development. In the next 40 years, the total population of Guizhou Province predicted by using the PROJCT model in the United Nations population Prediction Software has shown a trend of slow increase and then a slight decrease, and the proportion of children and adolescents has gradually decreased. The proportion of working-age population has been on the rise before 2020, and has basically declined after 2025, and the proportion of the elderly population has been increasing in the forecast year. In terms of population structure development, the population pyramid of Guizhou Province in 2010 and 2020 looks like a growth type, but the working-age population is relatively small and the number of children is relatively large. By 2050, the whole structure tends to be stable, but there are still obvious differences between the stable structure and the basic type. The specific manifestation is that the proportion of the elderly population is large and the proportion of the elderly population is increasing, while the proportion of children and the working-age population is relatively small. It can be predicted that the labor force of Guizhou Province will face more pressure of raising in 2050, and Guizhou will deal with the pressure of aging and the problem of aging. In the future, Guizhou can work in the following directions in order to face the problem of aging more effectively: first, to develop science and technology, to transform the economy and upgrade industries, to attract the inflow of labor force; and second, to improve the existing old-age security system. In particular, efforts should be made to gradually realize the full coverage of rural old-age security; third, to improve the cultural level of the elderly and enrich their spiritual life.
【学位授予单位】:贵州财经大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:C921

【参考文献】

相关期刊论文 前7条

1 张纯;曹广忠;;北京市人口老龄化的空间特征及影响因素[J];城市发展研究;2007年02期

2 杨玉水;贵州省人口老龄化的现状趋势特点及对策[J];贵州文史丛刊;2004年04期

3 刘爽;对中国区域人口老龄化过程的思考[J];人口学刊;1997年03期

4 杜鹏,翟振武,陈卫;中国人口老龄化百年发展趋势[J];人口研究;2005年06期

5 国家人口发展战略研究课题组;;国家人口发展战略研究报告[J];人口研究;2007年01期

6 何建宁;朱霄雪;;人口老龄化影响因素的灰色关联度分析[J];税务与经济;2010年06期

7 谢峰;;关于城镇空巢老人生活状况的调查——以贵州省空巢老人生活状况作个案分析[J];人口.社会.法制研究;2012年00期



本文编号:2226247

资料下载
论文发表

本文链接:https://www.wllwen.com/shekelunwen/renkou/2226247.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3743f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com