当前位置:主页 > 社科论文 > 生态环境论文 >

不同类型生物反应器填埋场氮污染物转化特性研究

发布时间:2018-03-01 14:11

  本文关键词: 厌氧生物反应器填埋场 准好氧生物反应器填埋场 好氧生物反应器填埋场 氮转化 降解动力学 出处:《西南交通大学》2017年硕士论文 论文类型:学位论文


【摘要】:垃圾填埋依然是目前城市生活垃圾处理与处置的主要方式,但是其氮污染问题是渗滤液处理工程面临的主要难题之一。根据填埋体氧分压不同,可将生物反应器填埋场分为厌氧生物反应器填埋场(UABL)、准好氧生物反应器填埋场(SABL)和好氧生物反应器填埋场(ABL)三种。该三种填埋体中由于微生物群落结构差异较大,其氮污染物的降解速率、转化途径以及去除效率等均有所差异,为此,本文基于室内模拟实验,建立UABL、SABL和ABL3个模拟生物反应器填埋场,并分别对其氮污染物的转化特性进行分析,为今后填埋场氮污染的去除提供一定的实验参数和技术参考。研究表明:实验运行300d后,UABL柱仍处于产酸阶段,SABL和ABL柱已基本趋于稳定。通过对各监测指标降解动力学分析表明,UABL、SABL和ABL柱渗滤液CODCr的去除分别符合对数-指数复合模型、线性-指数复合模型、线性-指数复合模型,去除速率分别为0.01232 d-1、0.02795 d-1、0.0392 d-1;VFA的去除分别符合对数-指数复合模型、对数-指数复合模型、线性-指数复合模型,去除速率分别为0.00544d-1、0.03018d-1、0.03225d-1;总氮和氨氮去除分别符合对数-指数复合模型、线性-指数复合模型、线性-指数复合模型,其中总氮的去除速率分别为0.00459d-1、0.01142d-1、0.0206d-1,氨氮的去除速率分别为0.00389d-1、0.0099d-1、0.0188d-1。各指标的降解动力学表明不同类型生物反应器填埋场的稳定化进程为:UABLSABLABL。另外,三维荧光分析和元素分析也表明ABL柱的腐殖化程度最好,SABL柱的腐殖化程度次之,UABL柱的腐殖化程度最差。各指标相关性分析表明,UABL、SABL和ABL柱渗滤液中氮类指标与有机物指标均大部分线性相关,且各填埋柱渗滤液总氮与氨氮均为高度线性相关,表明该三种填埋场渗滤液中主要氮污染物均为氨氮,氨氮变化趋势左右着总氮的变化趋势,所以两者表现为同步增减。实验结束时,UABL、SABL和ABL柱固相总氮剩余率分别为86.96%、80.38%、63.98%,总氮液化率分别为0.71%、0.18%、0.17%,总氮气化率分别为12.33%、19.43%、35.84%,表明SABL柱脱氮率为UABL柱的1.57倍,ABL柱脱氮率为SABL柱的1.84倍。又由于N20排放通量为SABLABLUABL,表明SABL不利于温室气体(N20)的减排。另外,UABL、SABL和ABL垃圾中氮的原子数百分比分别为2.58%、2.37%、1.99%,表明垃圾稳定化程度越好,垃圾氮含量越低,其氮的转化程度越高。
[Abstract]:Landfill is still the main way to treat and dispose of municipal solid waste, but nitrogen pollution is one of the main problems in leachate treatment. The bioreactor landfill can be divided into three types: UABL (anaerobic bioreactor landfill), SABL (pseudo aerobic bioreactor landfill) and ABL (aerobic bioreactor landfill). The degradation rate, transformation pathway and removal efficiency of nitrogen pollutants are different. Therefore, based on the laboratory simulation experiments, a series of simulated bioreactor landfills (UABL / SABL and ABL3) were established. The transformation characteristics of nitrogen pollutants were analyzed respectively. This paper provides some experimental parameters and technical references for the removal of nitrogen pollution in landfill site. The results show that the UABL column is still in the acid producing stage and the ABL column is stable after 300 days of operation. The mechanical analysis shows that the removal of CODCr from UABL SABL and ABL column leachate accords with logarithmic exponential composite model, respectively. The removal rate of VFA is 0.01232 d ~ (-1) ~ 0.02795 d ~ (-1) ~ (-1) ~ 0.0392 ~ (-1) d ~ (-1) ~ (-1) respectively. The removal rate of VFA is in accordance with logarithmic exponential model, logarithmic exponential compound model and linear exponential compound model, respectively. The removal rates of total nitrogen and ammonia nitrogen were 0.00544d-1N 0.03018d-1 0.03225d-1.The removal rates of total nitrogen and ammonia nitrogen were in accordance with logarithmic exponential compound model, linear exponential composite model, linear exponential compound model, respectively. The removal rate of total nitrogen was 0.00459d-1 / 0.01142d-1n 0.0206 d ~ (-1), respectively, and the removal rate of ammonia nitrogen was 0.00389d-1n 0.0099d-1n 0.0188d-1.The degradation kinetics of each index indicated that the stabilization process of different types of bioreactor landfills was as follows: UABL SABLABLL. Three-dimensional fluorescence analysis and elemental analysis also showed that the humification degree of ABL column was the best. The humification degree of ABL column was the lowest, and the correlation analysis of each index showed that the nitrogen index and organic content in the leachate of ABL column and UABL column leachate were the best. Most of the physical indexes were linearly correlated, The results showed that the main nitrogen pollutants in the landfill leachate were all ammonia nitrogen, and the change trend of ammonia nitrogen affected the change trend of total nitrogen. At the end of the experiment, the residual rate of solid phase total nitrogen was 86.96 and 80.38 and 63.98, respectively. The liquefaction rate of total nitrogen was 0.71 0.18 and 0.17, respectively, and the total nitrogen conversion rate was 12.33 and 19.4335.844.The results showed that the nitrogen removal rate of SABL column was 1.57 times that of UABL column and the denitrification rate of SABL column was 1.57 times that of UABL column. Because the emission flux of N20 is SABLABLUABL, which indicates that SABL is not conducive to the emission reduction of greenhouse gas N20. In addition, the percentage of nitrogen atoms in SABL and ABL garbage is 2.58 and 2.37, respectively, indicating that the better the stabilization level of MSW is, The lower the nitrogen content, the higher the nitrogen conversion degree.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X799.3

【参考文献】

相关期刊论文 前10条

1 张欢欢;王亚楠;孙英杰;吴昊;姜海钰;卞荣星;;准好氧填埋场氮素形态变化及转化特性研究[J];青岛理工大学学报;2014年01期

2 张超平;冯勇;罗鹏;;生物反应器填埋场的发展及应用研究[J];环境工程;2012年01期

3 张正安;屈明;许泽宏;贺胜英;;不同结构填埋场的环境污染分析[J];安徽农业科学;2009年09期

4 霍守亮;席北斗;樊石磊;刘鸿亮;张蕾;苏婧;吕擰;;生物反应器填埋场有机物变化模型研究[J];环境科学研究;2007年05期

5 刘秀红;杨庆;吴昌永;彭永臻;周利;尚会来;;不同污水生物脱氮工艺中N_2O释放量及影响因素[J];环境科学学报;2006年12期

6 刘丹;李启彬;;垃圾渗滤液处理的新思路——生物反应器填埋场技术的应用[J];西南交通大学学报;2005年06期

7 黄启飞,刘玉强,董路,王琪,刘国浔;渗滤液回流对准好氧填埋产气过程影响研究[J];环境工程;2005年05期

8 李兵,董志颖,赵勇胜,赵由才,牛冬杰;2种MSW好氧生物反应器型填埋方式的对比实验[J];环境科学;2005年03期

9 于晓华,何品晶,邵立明,李国建;填埋层空气状况对渗滤液中氮成分变化的影响[J];同济大学学报(自然科学版);2004年06期

10 何若,沈东升,朱荫湄;生物反应器填埋场处理生活垃圾的研究进展[J];浙江大学学报(农业与生命科学版);2004年03期



本文编号:1552261

资料下载
论文发表

本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1552261.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3cfaa***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com