海马齿与海藻净化养殖水体的研究
本文关键词: 养殖水体 海藻 海马齿 净化 细菌多样性 出处:《中山大学》2017年硕士论文 论文类型:学位论文
【摘要】:本文开展了“海马齿与海藻协同净化养殖水体技术的实验研究”,通过优化工艺控制参数,得到净化水质的最佳密度配比,以期为治理养殖水体污染、构建有针对性的生物修复工程提供理论依据;同时运用HiSeq测序技术,对样品中的16S rDNA V4区测序,进而对未经处理的养殖水体、植物—海藻联合净化下的综合养殖水体、石莼表面以及海马齿根系中细菌群落组成进行比较和多样性分析,以期探究海马齿与海藻的加入对养殖水体中细菌群落组成的影响。主要结果如下:(1)开展了不同养殖密度的浒苔、石莼以及不同种植密度的海马齿对养殖水体的净化实验。结果表明:浒苔的净化效果并不是很理想;石莼养殖密度为2g/L时,净化处理效果最佳,石莼的净化效果要远好于浒苔的净化效果;海马齿的种植密度为1.5株/L时,净化处理效果最佳。(2)开展了海马齿和石莼单一与协同净化处理养殖水体的比较实验。结果表明石莼和海马齿对养殖水体有净化作用,净化效果表现为:混合组(海马齿+石莼)石莼组(只投放石莼)海马齿组(只栽种海马齿)空白对照组,混合组对养殖水体中各项水质指标的降解效果最好,实验结果充分证明了海马齿和石莼协同作用对养殖水体水质具有明显的改善作用。(3)开展了不同配比的海马齿和石莼协同净化养殖水体的实验表明,C组(6.36g/L海马齿+1g/L石莼),即2株/L海马齿搭配1g/L石莼对养殖水体的净化效果最好,为最佳的配比。(4)四组样品中的细菌相对丰度排名前10的门均为:变形菌门(Proteobacteria),蓝藻门(Cyanobacteria),放线菌门(Actinobacteria),拟杆菌门(Bacteroidetes),浮霉菌门(Planctomycetes),疣微菌门(Verrucomicrobia),绿菌门(Chlorobi),厚壁菌门(Firmicutes),TM6,衣原体门(Chlamydiae)。四组样品中的细菌相对丰度排名前10的属均为:聚球藻属(Synechococcus),食碱菌属(Alcanivorax),分支杆菌属(Mycobacterium),假单胞菌属(Pseudomonas)、Thalassotalea、海单胞菌属(Marinomonas)、鲁杰氏菌属(Ruggeria)、Catenovulum。(5)通过稀释曲线分析四组样品的取样深度,发现四组样品变化趋势相似,随着测序量的增加均呈现先显著上升然后趋于平稳的变化趋势,最后基本达到饱和,证明了取样深度合理。由Rank Abundance曲线可知,四组样品所对应曲线的斜率均较大,表明存在优势菌;横向跨度较大,分类丰富度从大到小排序为XWS2XWS3XWS1XWS4。在Alpha多样性指数组间差异分析中,比较各组Observed_species指数得知XWS2组物种数量显著大于XWS1组(P0.05),XWS2组物种数量显著大于XWS4组(P0.05),其余各组之间在物种数量上则无显著性差异(P0.05);比较各组Shannon指数可知这四组样品的细菌多样性从大到小排序为XWS2、XWS1、XWS3、XWS4。由此可见,海马齿和石莼的加入促进了养殖水体中的微生物多样性。
[Abstract]:In this paper, an experimental study on the cooperative purification of culture water by sea horse teeth and seaweed was carried out. The optimum density ratio of purified water was obtained by optimizing the technological control parameters, in order to control the pollution of culture water. At the same time, using HiSeq sequencing technology, the 16s rDNA V4 region in the sample was sequenced, and then the untreated culture water and the integrated culture water under the combined purification of plant and seaweed were obtained. The composition and diversity of bacterial community in the surface of Ulva pertusa and the root system of sea horse tooth were compared and analyzed. The main results were as follows: (1) Enteromorpha enteromorpha with different culture densities was carried out. The purification experiments of Ulva pertusa and sea horse teeth with different planting density showed that the purification effect of Enteromorpha enteromorpha was not ideal, and the purification effect was the best when the density of culturing Ulva pertusa was 2 g / L. The purifying effect of Ulva pertusa was much better than that of Enteromorpha margin, and when the planting density of sea horse teeth was 1.5 / L, The results showed that Ulva pertussis and Ulva pertusa could purify the culture water body, and the results showed that Lactuca pertussis and Ulva pertusa could purify the culture water. The purifying effect was as follows: the mixture group (Ulva pertusa) and Ulva pertusa group (only put in Ulva pertusa) as blank control group, the mixed group had the best degradation effect on each water quality index in the culture water. The experimental results fully proved that the synergistic effect of sea horse tooth and Ulva pertusa on the water quality of cultured water was obviously improved. (3) the experiment of different proportion of sea horse tooth and Ulva pertusa synergistically purifying the culture water body showed that group C had 6.36 g / L sea horse tooth. 1 g / L Ulva pertusa, that is, 2 / L L sea horse teeth combined with 1 g / L Ulva pertusa, has the best purification effect on the cultured water body. The highest relative abundance of bacteria in the four groups were Proteobacteriae, Cyanobacteriae, Actinobacteriae, Bacteroidetesa, Planctomycetesus, Verrucombe microbiae, Chlorobiella, Firmicutesus 6, Chlamydia chlamydia 6, Chlorobiella, Firmicutesus 6, Bacteroidetesa, Planctomycetesus, Verrucombe microbiae, Chlorobiella, Firmicutesus 6, Chlamydia, Chlorobianum, Cyanobacterium, Actinobacteriae, Bacteroidetesa, Planctomycetesus, Verrucombiella, Chlorobiella, Firmicutesus, Chlamydia. The relative abundance of bacteria in the four groups were: Synechococcus, Alcanivoraxia, Mycobacterium, Thalassotalea, Marinomonas, Ruggeriae, Catenovulum. 5) the sampling depth of the four groups was analyzed by dilution curve. It was found that the change trend of the four groups of samples was similar. With the increase of sequencing quantity, all samples showed a trend of significant increase and then tended to steady, and finally reached saturation, which proved that the sampling depth was reasonable. The Rank Abundance curve showed that the sampling depth was reasonable. The slope of the corresponding curves of the four groups of samples were all large, indicating the existence of dominant bacteria, and the horizontal span was larger, and the classification richness was ranked from large to small to XWS2XWS3XWS1XWS4. in the analysis of the differences between groups of Alpha diversity indices, Comparison of Observed_species index showed that the number of species in the XWS2 group was significantly larger than that in the XWS1 group P0.05XWS2 group was significantly larger than that in the XWS4 group, but there was no significant difference in the number of species among the other groups. The comparison of the Shannon index among the four groups revealed the fineness of the four groups. The sequence of bacterial diversity from large to small is XWS2, XWS1, XWS3, XWS4. The addition of sea horse teeth and Ulva pertussis promoted the microbial diversity in aquaculture water.
【学位授予单位】:中山大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X714;X52
【参考文献】
相关期刊论文 前10条
1 袁星;林彦彦;黄建荣;黎祖福;;海马齿生态浮床对海水养殖池塘的修复效果[J];安徽农业科学;2016年14期
2 西瓦;;海洋:我不是垃圾场[J];海洋世界;2016年04期
3 张强;;水产养殖常用药物和敏感性试验研究进展[J];北京农业;2015年31期
4 刘俊强;;水产养殖水体污染及微生物修复的探讨[J];畜牧兽医科技信息;2015年06期
5 蒙宽宏;刘延滨;张玲;张文达;孙一萌;曹焱;;芦苇与香蒲对水中总磷总氮净化能力研究[J];环境科学与管理;2014年11期
6 蒋礼平;吴宗文;梁勤朗;陈章;李莉;帅柯;高启平;;南方鲇池塘底排污养殖模式研究及效益分析[J];科学养鱼;2014年11期
7 王悦明;王继富;李鑫;陈丹宁;周禹莹;;石油污染土壤微生物修复技术研究进展[J];环境工程;2014年08期
8 李磊;于彦龙;王长进;;大型海藻对养殖废水营养盐吸收与生物修复[J];城市地理;2014年12期
9 吴伟;范立民;;水产养殖环境的污染及其控制对策[J];中国农业科技导报;2014年02期
10 乔培培;陈丕茂;秦传新;李娜;;利用微生物净水研究进展[J];广东农业科学;2014年01期
相关会议论文 前2条
1 张志英;黄凌风;姜丹;郑新庆;谢天宏;林玉美;洪清波;;浮床种植海马齿对富营养化海水氮、磷移除能力的初步研究[A];中国环境科学学会2009年学术年会论文集(第二卷)[C];2009年
2 孟霞;贾晓平;黄洪辉;古小莉;;微生物在海水养殖环境调控与修复中的研究进展[A];泛珠三角区域渔业经济合作论坛第三次年会会议论文[C];2008年
相关硕士学位论文 前10条
1 原晓艳;海岸带石油降解菌的分离及多样性分析[D];青岛理工大学;2015年
2 赵蕊;慢性乙型病毒性肝炎患者肠道微生态的研究[D];广西医科大学;2015年
3 杜锦;浒苔对营养盐吸收特性及与赤潮藻竞争关系的初步研究[D];中国海洋大学;2014年
4 彭霈;我国海水养殖污染问题与其治理研究[D];中国海洋大学;2014年
5 郑辉;贝藻混养协同净化水产养殖废水技术研究[D];河北科技大学;2014年
6 张桐雨;几种海藻对养殖废水中氮磷去除率的研究[D];海南大学;2014年
7 赖龙玉;鲍藻混养模式的研究[D];集美大学;2014年
8 杨芳;浮床种植海马齿根际微生物的多样性及对多环芳烃的降解作用研究[D];厦门大学;2013年
9 孙琼花;大型海藻对养殖废水营养盐吸收及海区的生物修复[D];福建师范大学;2013年
10 唐红亮;重污染池塘水体富营养化生态修复技术及实例研究[D];华南理工大学;2012年
,本文编号:1552370
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1552370.html