当前位置:主页 > 社科论文 > 生态环境论文 >

基于能源消费的云南省碳排放测算分析及减排重要产业选择研究

发布时间:2018-03-26 08:50

  本文选题:碳排放 切入点:终端能源消费 出处:《昆明理工大学》2017年硕士论文


【摘要】:云南省作为低碳试点之一,要实现低碳经济发展,就需要大力推动节能减排,制定相对应的措施来实现不同阶段的减排目标。本文选取2000-2014年云南终端能源消费数据,基于一次能源消费,在参考二次能源(电力、热力)碳排放因子的变化趋势和省域电力调入调出的基础上,计算各部门承担比,结合二次能源所消耗的一次能源消费,间接测算出二次能源碳排放因子,进而以17种(含电力、热力)能源分八大部门构建云南省二氧化碳排放总量模型,并对云南省总体碳排放特征进行了全面分析。采用LMDI分解法,将云南省碳排放量分解为生产部门5类因素、生活部门6类因素合计11个驱动因素进行研究。最后,重点针对生产部门的碳排放强度分产业分解分析,并运用Theil指数分析云南省产业间碳排放强度的差异,从而找出云南省减排重要产业,并对其进行详细分析研究。研究结果表明:(1)2000-2014年,云南省生产部门碳排放量占总比高达91.2%,为碳排放主要来源,其中工业的碳排放量占比最高,交通运输业的碳排放量及增幅均较为突出。17种终端能源消费中,原煤的碳排放量最高,柴油的碳排放量增幅最大。生活部门内部,乡村碳排放量高于城镇,但增幅小于城镇。(2)对于生产部门,GDP指标为碳排放量第一驱动因素,最主要的负向驱动因素为能源强度,其次为产业结构。对于生活部门,人均收入为碳排放量的主要驱动因素,负向驱动的主要因素为能源强度,其次为能源结构。(3)工业对云南总体碳排放强度的下降起主导作用,交通运输业起反作用。工业和交通运输业是导致云南产业间碳排放强度差异增大的关键因素。工业碳排放量主要来自原煤、焦炭和电力的消费,在工业产业内部,能源消费集中于十大高耗能产业,尤其以黑色金属冶炼及压延加工业、化学原料及化学品制造业和非金属矿物制品业三大产业为主。交通运输业的发展则主要基于柴油的消耗。根据本文分析结果,基于云南省低碳经济发展,针对碳减排工作给出合理的措施建议。
[Abstract]:Yunnan Province, as one of the low-carbon pilot projects, in order to achieve low-carbon economic development, it is necessary to vigorously promote energy conservation and emission reduction, and formulate corresponding measures to achieve emission reduction targets at different stages. This paper selects the data of Yunnan terminal energy consumption from 2000 to 2014. Based on the primary energy consumption, and on the basis of referring to the change trend of carbon emission factors of secondary energy (electricity, heat) and the input and export of provincial electric power, the primary energy consumption of each sector is calculated and combined with the consumption of secondary energy. Indirectly calculate the carbon emission factor of secondary energy, and then construct the total carbon dioxide emission model of Yunnan Province by using 17 kinds of energy sources (including electricity and heat) into eight major sectors. The LMDI decomposition method is used to decompose the carbon emissions of Yunnan Province into 5 kinds of factors in the production sector and 11 driving factors of the 6 kinds of factors in the life sector. Focusing on the industrial decomposition analysis of carbon emission intensity in the production sector, and using the Theil index to analyze the differences of carbon emission intensity among industries in Yunnan Province, we can find out the important industries of reducing carbon emissions in Yunnan Province. From 2000 to 2014, the proportion of carbon emissions from the production sector in Yunnan Province was as high as 91.2, which was the main source of carbon emissions, with industry accounting for the highest proportion of carbon emissions. Among the 17 kinds of terminal energy consumption, the carbon emission from raw coal is the highest, and the carbon emission from diesel is increasing the most. Within the living department, the carbon emissions from rural areas are higher than those from towns. However, the increase is smaller than that of town. 2) for the production sector, GDP index is the first driving factor of carbon emissions, the most important negative driving factor is energy intensity, the second is industrial structure. For the living sector, per capita income is the main driving factor of carbon emissions. The main negative driving factor is energy intensity, followed by energy structure. Industry and transportation industry are the key factors leading to the increase of carbon emission intensity difference among Yunnan industries. Industrial carbon emissions mainly come from the consumption of raw coal, coke and electricity, and are within the industrial industry. Energy consumption is concentrated in the top 10 energy-consuming industries, especially in ferrous metal smelting and calender processing industries. Chemical raw materials and chemical manufacturing industry and non-metal mineral products industry are three main industries. The development of transportation industry is mainly based on the consumption of diesel oil. According to the results of this paper, based on the development of low carbon economy in Yunnan Province, Some reasonable measures are proposed for carbon abatement.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X32

【参考文献】

相关期刊论文 前10条

1 黄蕊;王铮;丁冠群;龚洋冉;刘昌新;;基于STIRPAT模型的江苏省能源消费碳排放影响因素分析及趋势预测[J];地理研究;2016年04期

2 王雅楠;赵涛;;基于GWR模型中国碳排放空间差异研究[J];中国人口·资源与环境;2016年02期

3 王长建;汪菲;张虹鸥;;新疆能源消费碳排放过程及其影响因素——基于扩展的Kaya恒等式[J];生态学报;2016年08期

4 吴常艳;黄贤金;揣小伟;徐国良;於冉;李丽;;基于EIO-LCA的江苏省产业结构调整与碳减排潜力分析[J];中国人口·资源与环境;2015年04期

5 董锋;杨庆亮;龙如银;程铄博;;中国碳排放分解与动态模拟[J];中国人口·资源与环境;2015年04期

6 邱丽丽;;云南省碳排放历史变化特征及影响因素分析[J];环境科学导刊;2015年01期

7 韩红珠;王小辉;马高;;陕西省能源消费碳排放及影响因素分析[J];山东农业科学;2015年01期

8 刘亦文;赵丽可;胡宗义;;中国碳排放的省域差异及影响因素的实证研究[J];经济数学;2014年04期

9 范玲;汪东;;浙江省能源消费碳排放动态特征及影响因素研究[J];生态经济;2014年04期

10 刘源;李向阳;林剑艺;崔胜辉;赵胜男;;基于LMDI分解的厦门市碳排放强度影响因素分析[J];生态学报;2014年09期



本文编号:1667179

资料下载
论文发表

本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1667179.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e4761***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com