中度嗜盐菌Martelella sp.AD-3生物强化修复多环芳烃污染盐碱土壤的研究
本文选题:多环芳烃 + 中度嗜盐菌 ; 参考:《华东理工大学》2017年硕士论文
【摘要】:本研究针对采油区PAHs污染盐碱土壤修复难度大、效率低的两大突出问题,采用生物强化修复技术探索PAHs污染盐碱土壤的修复方法,期望为我国油田地区PAHs污染盐碱土壤的生物修复提供基础数据。本研究分析了中度嗜盐菌Martelellasp.AD-3降解芴、苊、苊烯、荧蒽等PAHs的降解特性,分析其主要代谢产物,阐明降解底物和代谢产物随时间的变化过程,推测PAHs降解的代谢途径;在分析比较土壤理化性质的基础上,利用高通量测序技术分析PAHs污染盐碱土壤的微生物群落结构,鉴别PAHs污染盐碱土壤中的优势菌群,并采用RT-PCR测定PAHs双加氧酶基因含量;采用盆栽实验初步模拟研究AD-3与翅碱蓬联合生物强化修复PAHs污染盐碱土壤的修复效果。主要结果如下:(1)在3%盐度、pH为9的条件下,中度嗜盐菌Martelellasp.AD-3能分别以芴、苊、苊烯、荧蒽为唯一碳源和能源进行降解,3天后芴(100mg/L)、苊(100mg/L)、苊烯(100mg/L)、荧蒽(20mg/L)的降解率分别为 78.0%、71.7%、85.7%、43.6%;补加酵母粉(50 mg/L)能够促进AD-3菌对芴和苊烯的降解,24 h内可实现对100 mg/L芴和苊烯的完全降解。(2)利用HPLC、GC-MS、1HNMR等分析方法,分析AD-3菌降解芴、苊、苊烯的主要代谢产物。结果表明,芴的主要代谢产物有9-芴醇、9-芴酮、1,1a-二羟基-9-芴酮、邻苯二甲酸;苊的主要代谢产物有1-苊醇、1-苊酮、1,2-二羟基苊、1-羟基-2-苊酮、1,8-萘二甲酸、1,8-萘二甲酸酐、1-萘酸;苊烯的主要代谢产物有1,2-二羟基苊、1-羟基-2-苊酮、苊醌、1,8-萘二甲酸、1-萘酸,并由此推测出相应的代谢途径。(3)翅碱蓬根际土壤盐含量为22.51 g/kg,明显低于裸地土壤的40.03 g/kg,总有机碳和N含量也均高于裸地土壤,分别到达24.41和1.59g/kg,证明翅碱蓬对根际土壤环境有改善作用;翅碱蓬根际土壤包含32门758属细菌,多于裸地土样28门676属细菌,具有更高的微生物群落结构多样性,并且存在如Thioalkalispira、Halothiobacillus、Thiohalophilus等丰富的嗜盐碱或耐盐碱PAHs降解微生物资源。(4)翅碱蓬能在PAHs污染盐碱土壤中发芽存活,发芽率为76.0-90.0%;中度嗜盐菌Martelellasp.AD-3与翅碱蓬联合作用的修复效果最佳,PAHs去除率达到92.0%,并且土壤中的微生物数量最高,数量级达10~8CFU/g,初步证明了该修复方法的可行性。
[Abstract]:Aiming at the two outstanding problems of PAHs polluted saline soil remediation in oil recovery area, which is difficult and low efficiency, the bioremediation technology was used to explore the remediation method of PAHs contaminated saline alkali soil.It is expected to provide basic data for the bioremediation of saline-alkali soils contaminated by PAHs in oil fields of China.In this study, the degradation characteristics of fluorene, acenaphthene, acenaphthene, fluoranthene and other PAHs degradation by moderately halophilic bacteria (Martelellasp.AD-3) were analyzed. The main metabolites were analyzed, and the process of degradation of substrate and metabolites with time was clarified, and the metabolic pathway of PAHs degradation was inferred.On the basis of analyzing and comparing the physical and chemical properties of soil, the microbial community structure of saline-alkali soil polluted by PAHs was analyzed by high-throughput sequencing technique, and the dominant flora in saline-alkali soil polluted by PAHs was identified, and the content of PAHs dioxygenase gene was determined by RT-PCR.Pot experiment was used to study the effect of AD-3 combined with Suaeda salsa on the remediation of saline-alkali soil contaminated by PAHs.The main results are as follows: (1) under the condition of 3% salinity and pH 9, the Martelellasp.AD-3 of moderately halophilic bacteria can be divided into fluorene, acenaphthene and acenaphthene, respectively.HPLCX GC-MS 1H NMR and other analytical methods were used.The main metabolites of fluorene, acenaphthene and acenaphthene degraded by AD-3 were analyzed.The main metabolites of acenaphthene are 1-hydroxy-2-acenaphthene ketone, acenaphthene quinone 1-8-naphthalene dicarboxylic acid,It was inferred that the soil salt content in the rhizosphere of Suaeda salsa was 22.51 g / kg, which was significantly lower than that in bare soil (40.03 g / kg), and the contents of total organic carbon and N were also higher than those in bare soil.Reaching 24.41 and 1.59 g / kg, respectively, it was proved that Suaeda salsa could improve the rhizosphere soil environment, and that the rhizosphere soil of Suaeda salsa contained 32 758 genera of bacteria, more than 28 phylum 676 genera of bacteria in bare soil, and had higher diversity of microbial community structure.And there are abundant salinophilic or saline-tolerant microbial resources, such as Thioalkalispiraus Halothiobacillus thiohalophilus, which can germinate and survive in saline-alkali soil polluted by PAHs.The germination rate was 76.0-90.0.The best removal rate of PAHs was 92.0 by the combination of moderate halophilic bacteria Martelellasp.AD-3 and Suaeda salsa, and the number of microbes in the soil was the highest, with an order of 10 ~ 8 CFU / g, which proved the feasibility of the remediation method.
【学位授予单位】:华东理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X53
【参考文献】
相关期刊论文 前10条
1 倪妮;宋洋;王芳;卞永荣;蒋新;;多环芳烃污染土壤生物联合强化修复研究进展[J];土壤学报;2016年03期
2 宋立超;钮旭光;张玉龙;刘宛;李培军;;盐渍化土壤翅碱蓬根际促生细菌的筛选及对多环芳烃的降解特性[J];生态学杂志;2016年01期
3 夏围围;贾仲君;;高通量测序和DGGE分析土壤微生物群落的技术评价[J];微生物学报;2014年12期
4 赵秀芳;张清;王振宇;;微地形对天津滨海吹填土土壤理化性质和植被状况的影响[J];土壤通报;2014年02期
5 刘健;宋雪英;孙瑞莲;解伏菊;王仁卿;王文兴;;胜利油田采油区土壤石油污染状况及其微生物群落结构[J];应用生态学报;2014年03期
6 唐景春;刘文杰;徐婷婷;朱富珍;李景义;侯涛;;不同处理条件对石油污染土壤植物修复的影响[J];环境工程学报;2013年08期
7 赵媛媛;张万坤;马慧;白鹏;林景卫;钟鸣;;降解菌ZQ_5与紫茉莉对芘污染土壤的联合修复[J];环境工程学报;2013年07期
8 杨萌青;李立明;李川;李广贺;;石油污染土壤微生物群落结构与分布特性研究[J];环境科学;2013年02期
9 杨红军;谢文军;陈志英;陆兆华;;六种野草对土壤中菲的降解研究[J];土壤通报;2012年05期
10 张晶;林先贵;刘魏魏;尹睿;;土壤微生物群落对多环芳烃污染土壤生物修复过程的响应[J];环境科学;2012年08期
,本文编号:1742011
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1742011.html