当前位置:主页 > 社科论文 > 生态环境论文 >

球形氧化铝负载锰基双金属氧化物催化剂催化臭氧深度氧化NO(英文)

发布时间:2018-04-13 01:34

  本文选题:一氧化氮 + 深度氧化 ; 参考:《催化学报》2017年07期


【摘要】:在工业锅炉烟气处理领域,由于锅炉容量低,烟气温度往往无法满足传统选择性催化还原(SCR)所需温度窗口.工业锅炉烟气成分的复杂性也给氮氧化物治理带来了严峻考验.臭氧深度氧化NO结合湿法洗涤同时脱硫脱硝技术具有独特的应用优势.传统臭氧氧化技术中,NO被臭氧氧化为NO_2,进而在脱硫塔中实现一体化脱硫脱硝.但由于NO_2溶解度相对较低,需要在脱硫浆液中加入添加剂提高脱硝效率,造成运行成本增加.NO经臭氧深度氧化后,NO_2进一步转化为溶解度高的N_2O_5,传统脱硫石膏浆液即可实现高效吸收N_2O_5,从而有效提高氮氧化物吸收效率.但由于N_2O_5生成反应速率低,深度氧化存在臭氧投入量大、反应时间长及臭氧残留多的缺点.臭氧耦合催化剂深度氧化NO可有效解决以上问题.首先,本文采用溶胶-凝胶法合成一系列单金属氧化物(Mn,Co,Ce,Fe,Cu,Cr)作为臭氧深度氧化NO的催化剂.结果发现锰氧化物表现出最高的催化活性,在70 ℃下,O_3/NO摩尔比为2.0时经过0.12 s的反应时间催化剂即可实现80%以上的转化效率.但根据N_2O_5生成的总包反应(2NO+3O_3=N_2O_5+3O_2)可以看出,O_3/NO摩尔比为1.5时即可实现N_2O_5的完全转化.由于催化臭氧氧化反应温度较低,中间产物在催化剂表面聚集,占据大量活性位,进而导致无法实现1.5摩尔比的高效转化.通过采用球形氧化铝作为载体,避免粉末状催化剂紧凑型布置,增加换热面积,可有效降低催化剂表面中间产物聚集;同时延长了气体与催化剂的接触时间,提高反应效率.在球形氧化铝载体上负载锰基双金属氧化物(Ce-Mn,Fe-M,Cr-Mn,Cu-Mn和Co-Mn),在初始NO浓度为410 mg/m~3,反应温度100 ℃,O_3/NO摩尔比1.5,催化反应时间0.12 s的工况下,催化剂最终实现95%(Fe-Mn)和88%(Ce-Mn)的转化效率,剩余NO和NO_2的浓度分别低于20 mg/m~3(Fe-Mn)和50 mg/m~3(Ce-Mn),臭氧残留浓度低于25 mg/m~3.同负载单一锰氧化物(83%转化率)相比,双金属氧化物进一步提高了N_2O_5生成效率.因此,臭氧耦合催化剂深度氧化NO结合湿法吸收在工业锅炉超低排放(NO_x50 mg/m~3)领域具有广泛应用前景.通过XRD、氮气吸附、H2-TPR和XPS等手段研究了催化剂的晶体结构、孔结构参数、氧化还原性能和表面原子价态.催化臭氧深度氧化NO主要与催化剂对臭氧的分解性能和对NO的氧化性能有关.较大的比表面积和孔容有利于催化剂的吸附.氧空位有利于臭氧的吸附和分解.Mn~(4+)和Mn~(3+)的均衡分布既有利于NO的吸附氧化又有利于臭氧的吸附分解,最终提高了N_2O_5生成效率.
[Abstract]:In the field of industrial boiler flue gas treatment, because of the low boiler capacity, the flue gas temperature often can not meet the traditional selective catalytic reduction (SCR) temperature window.The complexity of flue gas composition of industrial boiler also brings severe test to nitrogen oxide treatment.The technology of ozone deep oxidation no combined with wet washing and desulfurization and denitrification has unique application advantages.In the traditional ozone oxidation technology, no is oxidized to no _ 2 by ozone, and the integrated desulfurization and denitrification is realized in the desulfurization tower.However, because the solubility of NO_2 is relatively low, it is necessary to add additives to desulphurization slurry to improve denitrification efficiency.As a result, the operation cost increased. No was oxidized deeply by ozone, and then converted into the high solubility Ns _ 2O _ 5. The traditional desulphurization gypsum slurry could efficiently absorb N _ 2O _ 5, thus effectively improving the nitrogen oxide absorption efficiency.However, because of the low reaction rate of N_2O_5 formation, the deep oxidation has the disadvantages of large ozone input, long reaction time and more ozone residue.Deep oxidation of no with ozone coupling catalyst can effectively solve the above problems.Firstly, a series of monometallic oxides (MNO _ 2O _ 3) were synthesized by sol-gel method as catalysts for deep ozonation of no.The results showed that manganese oxide exhibited the highest catalytic activity, and the conversion efficiency was over 80% after the reaction time of 0.12 s at 70 鈩,

本文编号:1742356

资料下载
论文发表

本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1742356.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5b070***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com