Bi基复合材料的制备及其可见光催化性能研究
本文选题:PVP + BiOBr ; 参考:《湘潭大学》2017年硕士论文
【摘要】:Bi系半导体光催化材料因其独特的结构,合适的禁带宽度而具有良好的光催化活性,受到广大研究者关注。然而对于纯相Bi系光催化材料而言,其易发生光腐蚀现象、电子空穴复合率高、难以回收等缺点制约了其在实际工业中的应用和发展。本文选取化学性质稳定、禁带宽度适中、吸光范围广及环境友好的BiFeO_3及BiOBr为研究对象,并针对其缺点,以性能为导向进行了一系列适当的改性。具体开展的主要工作及研究结果如下:(1)采用PVP辅助溶剂热法成功制备了分散均匀的空心微球状BiOBr~-海泡石复合光催化剂(PVP/BiOBr/AS)。利用SEM、XRD、FTIR、XPS、UV-Vis等表征技术对其形貌特征、晶相结构、元素价态、吸光性能等进行了测试分析,结果表明改性后的复合催化剂团聚现象降低,光吸收性能增加,电子空穴复合率也显著降低。(2)以罗丹明B(RhB)为目标污染物评价了不同海泡石含量的PVP/BiOBr/AS复合光催化剂的催化活性,优选出海泡石最佳掺杂量为6%,光催化降解RhB120min时,脱色率100%,TOC的去除率为75.3%,明显优于纯相BiOBr。光催化降解RhB的最佳反应条件:催化剂投加量为1.0g/L,溶液初始浓度为10mg/L,溶液的初始pH为5。以最佳配比的PVP/BiOBr/AS(6%)复合光催化剂降解双氯芬酸钠,表现出良好的催化性能,表明复合催化剂适用范围较广。(3)采用水热法制备了异质结结构的斜方六面体BiFeO_3/CdS复合光催化剂。利用SEM、XRD、BET、UV-Vis等表征技术对其形貌特征、晶相结构、比表面积、吸光性能等进行了测试分析。以罗丹明b(RhB)为目标污染物评价了不同CdS含量的BiFeO_3/CdS复合光催化剂的催化活性,结果表明BiFeO_3/CdS复合光催化剂催化活性和稳定性都得到了提升,在一定程度上解决了BiFeO_3光催化性能不够高和CdS易光腐蚀等问题。(4)进行自由基捕获实验考察反应过程中活性物种。结果表明:O2·-、h+、·OH均参与PVP/BiOBr/AS降解有机物的过程,其中O2·-起主要作用。在BiFeO_3/CdS光催化降解RhB过程中,O2·-是主要活性物种。(5)由GC-MS和UV-Vis DRS测试分析可知,在PVP/BiOBr/AS催化剂降解RhB过程中,RhB首先发生脱乙基过程,而后在自由基的作用下发生苯环裂解。生成了化合物十六酸、油酸和对二苯酚,随着反应时间的增加,自由基逐步将污染物降解成己二酸、戊二酸等小分子化合物,最后被矿化成CO2、H2O。
[Abstract]:Bi-based semiconductor photocatalytic materials have good photocatalytic activity due to their unique structure and suitable band gap. However, for the pure Bi system photocatalytic materials, the photocorrosion is easy to occur, the electron hole recombination rate is high, and it is difficult to recover, which restricts its application and development in practical industry. In this paper, BiFeO_3 and BiOBr, which have stable chemical properties, moderate bandgap, wide absorptivity and friendly environment, are selected as research objects, and a series of performance oriented modification are carried out according to their shortcomings. The main work and results are as follows: (1) PVP assisted solvothermal method was used to successfully prepare a well-dispersed hollow microsphere BiOBr-sepiolite composite photocatalyst (PVP / BiOBr-ASN). The morphology, crystal structure, elemental valence state and absorptivity of the modified composite catalysts were measured and analyzed by means of the SEMP-XRDX / FTRDX / XPS UV-Vis technique. The results showed that the agglomeration of the modified composite catalysts was decreased, and the photoabsorption properties of the modified catalysts were increased. The electron hole recombination rate was also significantly reduced. (2) the catalytic activity of PVP/BiOBr/AS composite photocatalyst with different sepiolite content was evaluated by using Rhodamine Bhh RhB) as the target pollutant. The optimum doping amount of sepiolite was 6 and the photocatalytic degradation of RhB120min was obtained. The removal rate of TOC was 75.3%, which was better than that of pure phase BiOBr. The optimum reaction conditions for photocatalytic degradation of RhB were as follows: the dosage of catalyst was 1.0 g / L, the initial concentration of the solution was 10 mg / L, and the initial pH of the solution was 5. The photocatalytic degradation of diclofenac sodium by PVP / BiOBr-AS6) composite photocatalyst shows good catalytic performance, indicating that the composite catalyst is suitable for a wide range. (3) Heterojunction structure oblique hexahedron BiFeO_3/CdS composite photocatalyst has been prepared by hydrothermal method. The morphology, crystal phase structure, specific surface area and absorptivity were measured and analyzed by means of SEMX (XRDX) BET-UV-Vis. The catalytic activity of BiFeO_3/CdS composite photocatalyst with different CdS content was evaluated by using Rhodamine CdS as the target pollutant. The results showed that the catalytic activity and stability of BiFeO_3/CdS composite photocatalyst were improved. To some extent, the problem of BiFeO_3 photocatalysis is not high enough and CdS is easy to corrode. 4) the free radical trapping experiment is carried out to investigate the active species in the reaction process. The results showed that both O _ 2 -O _ 2 and OH were involved in the degradation of organic matter by PVP/BiOBr/AS, and O _ 2-played a major role in the degradation of organic matter. In the process of BiFeO_3/CdS photocatalytic degradation of RhB, O2- is the main active species. According to the analysis of GC-MS and UV-Vis DRS, it can be seen that the deethylation process occurs first and then benzene ring cleavage occurs under the action of free radical in the degradation of RhB by PVP/BiOBr/AS catalyst. The compounds hexadecanoic acid, oleic acid and p-diphenol were formed. With the increase of reaction time, the pollutants were gradually degraded into adipic acid, glutaric acid and other small molecular compounds, which were mineralized to CO _ 2H _ 2O.
【学位授予单位】:湘潭大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X703;TB33
【参考文献】
相关期刊论文 前10条
1 孟婉婉;胡瑞生;杨军;杜燕飞;李景佳;王宏叶;;La掺杂BiFeO_3对苯酚光催化降解性能的影响(英文)[J];催化学报;2016年08期
2 王春英;朱清江;谷传涛;石湖泉;张大超;余长林;;稀土Ce~(3+)掺杂Bi_2WO_6光催化降解罗丹明B的研究[J];中国环境科学;2015年09期
3 董多;宋恩军;车寅生;杨长秀;王敏;高兴莹;;硼和铒共掺杂BiVO_4光催化降解罗丹明B的研究[J];工业水处理;2015年05期
4 Guo-Hua Jiang;Xia Li;Zhen Wei;Teng-Teng Jiang;Xiang-Xiang Du;Wen-Xing Chen;;Effects of N and/or S Doping on Structure and Photocatalytic Properties of BiOBr Crystals[J];Acta Metallurgica Sinica(English Letters);2015年04期
5 付丹;;纳米TiO_2在有机污水治理领域的研究进展[J];辽宁化工;2015年03期
6 康可佳;刘薇;刘侨博;曾红云;潘保原;;电芬顿降解罗丹明B影响因素研究[J];现代农业科技;2015年03期
7 肖剑;张颖心;尤玉静;;三维花状BiOBr/CNTs复合光催化剂降解罗丹明废水研究[J];应用化工;2014年09期
8 王燕琴;瞿梦;冯红武;程小芳;;卤氧化铋光催化剂的研究进展[J];化工进展;2014年03期
9 刘亚子;何宇翔;杨绍贵;陈鸿哲;;BiFeO_3可见光催化降解甲基紫[J];化工环保;2013年06期
10 林立;黄满红;龙立平;陈亮;陈东辉;;卤氧化铋异质结型可见光光催化剂的新进展[J];材料导报;2013年19期
相关博士学位论文 前2条
1 沈建超;二氧化钛/大尺寸多孔窄带隙半导体复合材料制备及其可见光催化性能研究[D];浙江大学;2015年
2 简子聪;二氧化钛基复合催化剂的合成、表征及光催化活性的研究[D];华南理工大学;2014年
相关硕士学位论文 前10条
1 陈静;钨基纳米半导体材料的制备及催化性能研究[D];东南大学;2016年
2 黄春辉;活性炭微球/TiO_2复合光催化剂制备及其降解阳离子红研究[D];湘潭大学;2015年
3 方文雪;石墨相氮化碳基可见光催化剂的制备及光降解性能研究[D];郑州大学;2015年
4 刘玉洁;Bi基氧化物与Ti0_2复合材料的制备及光催化性能[D];大连理工大学;2015年
5 汤海波;铋基光催化剂的制备及其光催化活性的研究[D];河南师范大学;2015年
6 陶亚茹;铋系半导体光催化剂的制备及其对有机污染物的降解研究[D];东华大学;2015年
7 朱培娟;溴化氧铋(BiOBr)光催化降解橙黄Ⅱ和亚甲基蓝的研究[D];华东师范大学;2014年
8 邸丽景;BiFeO_3光催化剂的制备及其改性研究[D];兰州理工大学;2014年
9 叶坪;卤氧铋基光催化剂的制备及其性能的研究[D];浙江师范大学;2014年
10 王伶俐;卤氧化铋BiOX(X= Cl,Br,I)的制备及对有毒有机污染物降解机理研究[D];三峡大学;2013年
,本文编号:1828528
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1828528.html